scholarly journals Analytical and numerical results for flow and shock formation in two-layer gravity currents

Author(s):  
P. J. Montgomery ◽  
T. B. Moodie

AbstractMany gravity driven flows can be modelled as homogeneous layers of inviscid fluid with a hydrostatic pressure distribution. There are examples throughout oceanography, meteorology, and many engineering applications, yet there are areas which require further investigation. Analytical and numerical results for two-layer shallow-water formulations of time dependent gravity currents travelling in one spatial dimension are presented. Model equations for three physical limits are developed from the hydraulic equations, and numerical solutions are produced using a relaxation scheme for conservation laws developed recently by S. Jin and X. Zin [6]. Hyperbolicity of the model equations is examined in conjunction with the stability Froude number, and shock formation at the interface of the two layers is investigated using the theory of weakly nonlinear hyperbolic waves.

2014 ◽  
Vol 758 ◽  
pp. 180-220 ◽  
Author(s):  
Raphaël C. Assier ◽  
Xuesong Wu

AbstractThe stability of premixed flames in a duct is investigated using an asymptotic formulation, which is derived from first principles and based on high-activation-energy and low-Mach-number assumptions (Wu et al., J. Fluid Mech., vol. 497, 2003, pp. 23–53). The present approach takes into account the dynamic coupling between the flame and its spontaneous acoustic field, as well as the interactions between the hydrodynamic field and the flame. The focus is on the fundamental mechanisms of combustion instability. To this end, a linear stability analysis of some steady curved flames is undertaken. These steady flames are known to be stable when the spontaneous acoustic perturbations are ignored. However, we demonstrate that they are actually unstable when the latter effect is included. In order to corroborate this result, and also to provide a relatively simple model guiding active control, we derived an extended Michelson–Sivashinsky equation, which governs the linear and weakly nonlinear evolution of a perturbed flame under the influence of its spontaneous sound. Numerical solutions to the initial-value problem confirm the linear instability result, and show how the flame evolves nonlinearly with time. They also indicate that in certain parameter regimes the spontaneous sound can induce a strong secondary subharmonic parametric instability. This behaviour is explained and justified mathematically by resorting to Floquet theory. Finally we compare our theoretical results with experimental observations, showing that our model captures some of the observed behaviour of propagating flames.


Author(s):  
Nur Auni Baharum ◽  
Zanariah Abdul Majid ◽  
Norazak Senu

The performance of the numerical computation based on the diagonally implicit multistep block method for solving Volterra integrodifferential equations (VIDE) of the second kind has been analyzed. The numerical solutions of VIDE will be computed at two points concurrently using the proposed numerical method and executed in the predictor-corrector (PECE) mode. The strategy to obtain the numerical solution of an integral part is discussed and the stability analysis of the diagonally implicit multistep block method was investigated. Numerical results showed the competence of diagonally implicit multistep block method when solving Volterra integrodifferential equations compared to the existing methods.


2016 ◽  
Author(s):  
Borja Aguiar-González ◽  
Theo Gerkema

Abstract. A new two-fluid layer model consisting of forced rotation-modified Boussinesq equations is derived for studying tidally-generated fully nonlinear, weakly nonhydrostatic dispersive interfacial waves. This set is a generalization of the Choi-Camassa equations, extended here with forcing terms and Coriolis effects. The forcing is represented by a horizontally oscillating sill, mimicking a barotropic tidal flow over topography. Solitons are generated by a disintegration of the interfacial tide. Because of strong non-linearity, solitons in some cases attain a limiting table-shaped form, in accordance with soliton theory. More generally, we use the model equations to investigate the role of the initial stages of the internal tide on the limiting amplitudes of solitons under fully nonlinear conditions. Numerical solutions reveal that the tide-generated solitons are primarily limited by the underlying quasi-nonlinear internal tide. We show the decisive factor is the generation of higher harmonics, which already limit the growth of the initial internal tide. As a consequence, and contrary to predictions by classical KdV theory alone, we find that tidally generated solitons are subjected to limiting amplitudes even under weakly nonlinear conditions. This implies that under strongly nonlinear conditions, amplitudes of solitons may be limited before attaining a table-shaped form.


1989 ◽  
Vol 206 ◽  
pp. 1-23 ◽  
Author(s):  
W. K. Melville ◽  
G. G. Tomasson ◽  
D. P. Renouard

We consider the evolution of weakly nonlinear dispersive long waves in a rotating channel. The governing equations are derived and approximate solutions obtained for the initial data corresponding to a Kelvin wave. In consequence of the small nonlinear speed correction it is shown that weakly nonlinear Kelvin waves are unstable to a direct nonlinear resonance with the linear Poincaré modes of the channel. Numerical solutions of the governing equations are computed and found to give good agreement with the approximate analytical solutions. It is shown that the curvature of the wavefront and the decay of the leading wave amplitude along the channel are attributable to the Poincaré waves generated by the resonance. These results appear to give a qualitative explanation of the experimental results of Maxworthy (1983), and Renouard, Chabert d'Hières & Zhang (1987).


1985 ◽  
Vol 50 (11) ◽  
pp. 2381-2395
Author(s):  
Alena Brunovská ◽  
Ján Buriánek ◽  
Ján Ilavský ◽  
Ján Valtýni

The diffusion and the shell progressive models of deactivation caused by irreversible chemisorption of a catalytic poison are presented for a single catalyst pellet. The method for solution of the model equations is proposed. The numerical results are compared with experimental data obtained by measuring concentration and temperature changes due to thiophene poisoning in benzene hydrogenation over a nickel-alumina catalyst.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
András L. Szabó ◽  
Bitan Roy

Abstract We compute the effects of strong Hubbardlike local electronic interactions on three-dimensional four-component massless Dirac fermions, which in a noninteracting system possess a microscopic global U(1) ⊗ SU(2) chiral symmetry. A concrete lattice realization of such chiral Dirac excitations is presented, and the role of electron-electron interactions is studied by performing a field theoretic renormalization group (RG) analysis, controlled by a small parameter ϵ with ϵ = d−1, about the lower-critical one spatial dimension. Besides the noninteracting Gaussian fixed point, the system supports four quantum critical and four bicritical points at nonvanishing interaction couplings ∼ ϵ. Even though the chiral symmetry is absent in the interacting model, it gets restored (either partially or fully) at various RG fixed points as emergent phenomena. A representative cut of the global phase diagram displays a confluence of scalar and pseudoscalar excitonic and superconducting (such as the s-wave and p-wave) mass ordered phases, manifesting restoration of (a) chiral U(1) symmetry between two excitonic masses for repulsive interactions and (b) pseudospin SU(2) symmetry between scalar or pseudoscalar excitonic and superconducting masses for attractive interactions. Finally, we perturbatively study the effects of weak rotational symmetry breaking on the stability of various RG fixed points.


2002 ◽  
Vol 452 ◽  
pp. 163-187 ◽  
Author(s):  
C. L. BURCHAM ◽  
D. A. SAVILLE

A liquid bridge is a column of liquid, pinned at each end. Here we analyse the stability of a bridge pinned between planar electrodes held at different potentials and surrounded by a non-conducting, dielectric gas. In the absence of electric fields, surface tension destabilizes bridges with aspect ratios (length/diameter) greater than π. Here we describe how electrical forces counteract surface tension, using a linearized model. When the liquid is treated as an Ohmic conductor, the specific conductivity level is irrelevant and only the dielectric properties of the bridge and the surrounding gas are involved. Fourier series and a biharmonic, biorthogonal set of Papkovich–Fadle functions are used to formulate an eigenvalue problem. Numerical solutions disclose that the most unstable axisymmetric deformation is antisymmetric with respect to the bridge’s midplane. It is shown that whilst a bridge whose length exceeds its circumference may be unstable, a sufficiently strong axial field provides stability if the dielectric constant of the bridge exceeds that of the surrounding fluid. Conversely, a field destabilizes a bridge whose dielectric constant is lower than that of its surroundings, even when its aspect ratio is less than π. Bridge behaviour is sensitive to the presence of conduction along the surface and much higher fields are required for stability when surface transport is present. The theoretical results are compared with experimental work (Burcham & Saville 2000) that demonstrated how a field stabilizes an otherwise unstable configuration. According to the experiments, the bridge undergoes two asymmetric transitions (cylinder-to-amphora and pinch-off) as the field is reduced. Agreement between theory and experiment for the field strength at the pinch-off transition is excellent, but less so for the change from cylinder to amphora. Using surface conductivity as an adjustable parameter brings theory and experiment into agreement.


1987 ◽  
Vol 178 ◽  
pp. 31-52 ◽  
Author(s):  
W. K. Melville ◽  
Karl R. Helfrich

The evolution of weakly-nonlinear two-layer flow over topography is considered. The governing equations are formulated to consider the effects of quadratic and cubic nonlinearity in the transcritical regime of the internal mode. In the absence of cubic nonlinearity an inhomogeneous Korteweg-de Vries equation describes the interfacial displacement. Numerical solutions of this equation exhibit undular bores or sequences of Boussinesq solitary waves upstream in a transcritical regime. For sufficiently large supercritical Froude numbers, a locally steady flow is attained over the topography. In that regime in which both quadratic and cubic nonlinearity are comparable, the evolution of the interface is described by an inhomogeneous extended Kortewegde Vries (EKdV) equation. This equation displays undular bores upstream in a subcritical regime, but monotonic bores in a transcritical regime. The monotonic bores are solitary wave solutions of the corresponding homogeneous EKdV equation. Again, locally steady flow is attained for sufficiently large supercritical Froude numbers. The predictions of the numerical solutions are compared with laboratory experiments which show good agreement with the solutions of the forced EKdV equation for some range of parameters. It is shown that a recent result of Miles (1986), which predicts an unsteady transcritical regime for single-layer flows, may readily be extended to two-layer flows (described by the forced KdV equation) and is in agreement with the results presented here.Numerical experiments exploiting the symmetry of the homogeneous EKdV equation show that solitary waves of fixed amplitude but arbitrary length may be generated in systems described by the inhomogeneous EKdV equation.


2008 ◽  
Vol 616 ◽  
pp. 327-356 ◽  
Author(s):  
BRIAN L. WHITE ◽  
KARL R. HELFRICH

A steady theory is presented for gravity currents propagating with constant speed into a stratified fluid with a general density profile. Solution curves for front speed versus height have an energy-conserving upper bound (the conjugate state) and a lower bound marked by the onset of upstream influence. The conjugate state is the largest-amplitude nonlinear internal wave supported by the ambient stratification, and in the limit of weak stratification approaches Benjamin's energy-conserving gravity current solution. When the front speed becomes critical with respect to linear long waves generated above the current, steady solutions cannot be calculated, implying upstream influence. For non-uniform stratification, the critical long-wave speed exceeds the ambient long-wave speed, and the critical-Froude-number condition appropriate for uniform stratification must be generalized. The theoretical results demonstrate a clear connection between internal waves and gravity currents. The steady theory is also compared with non-hydrostatic numerical solutions of the full lock release initial-value problem. Some solutions resemble classic gravity currents with no upstream disturbance, but others show long internal waves propagating ahead of the gravity current. Wave generation generally occurs when the stratification and current speed are such that the steady gravity current theory fails. Thus the steady theory is consistent with the occurrence of either wave-generating or steady gravity solutions to the dam-break problem. When the available potential energy of the dam is large enough, the numerical simulations approach the energy-conserving conjugate state. Existing laboratory experiments for intrusions and gravity currents produced by full-depth lock exchange flows over a range of stratification profiles show excellent agreement with the conjugate state solutions.


2018 ◽  
Vol 22 ◽  
pp. 01061 ◽  
Author(s):  
Asif Yokus ◽  
Tukur Abdulkadir Sulaiman ◽  
Haci Mehmet Baskonus ◽  
Sibel Pasali Atmaca

This study acquires the exact and numerical approximations of a reaction-convection-diffusion equation arising in mathematical bi- ology namely; Murry equation through its analytical solutions obtained by using a mathematical approach; the modified exp(-Ψ(η))-expansion function method. We successfully obtained the kink-type and singular soliton solutions with the hyperbolic function structure to this equa- tion. We performed the numerical simulations (3D and 2D) of the obtained analytical solutions under suitable values of parameters. We obtained the approximate numerical and exact solutions to this equa- tion by utilizing the finite forward difference scheme by taking one of the obtained analytical solutions into consideration. We investigate the stability of the finite forward difference method with the equation through the Fourier-Von Neumann analysis. We present the L2 and L∞ error norms of the approximations. The numerical and exact approx- imations are compared and the comparison is supported by a graphic plot. All the computations and the graphics plots in this study are car- ried out with help of the Matlab and Wolfram Mathematica softwares. Finally, we submit a comprehensive conclusion to this study.


Sign in / Sign up

Export Citation Format

Share Document