A TOA/AOA Underwater Acoustic Positioning System Based on the Equivalent Sound Speed

2018 ◽  
Vol 71 (6) ◽  
pp. 1431-1440 ◽  
Author(s):  
Mingzhen Xin ◽  
Fanlin Yang ◽  
Faxing Wang ◽  
Bo Shi ◽  
Kai Zhang ◽  
...  

High-precision underwater positioning must eliminate the influence of refraction artefacts. Since a Time Of Arrival - Global Navigation Satellite System Intelligent Buoys (TOA-GIB) system does not measure incident beam angles, common refraction correction methods cannot be directly used for refraction artefacts. An Equivalent Sound Speed (ESS) iteration method is proposed and is based on the transformation relations between depth, the ESS gradient and the incident beam angle. On this basis, a TOA/AOA-GIB system without a real-time Sound Speed Profile (SSP) is proposed to estimate the target position and the ESS gradient as unknown parameters. The results from a simulation experiment show that the positioning accuracy of a TOA/AOA-GIB system is better than 0·07% of water depth when the accuracy of the incident beam angle is 0·1°.

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 782
Author(s):  
Shuo Cao ◽  
Honglei Qin ◽  
Li Cong ◽  
Yingtao Huang

Position information is very important tactical information in large-scale joint military operations. Positioning with datalink time of arrival (TOA) measurements is a primary choice when a global navigation satellite system (GNSS) is not available, datalink members are randomly distributed, only estimates with measurements between navigation sources and positioning users may lead to a unsatisfactory accuracy, and positioning geometry of altitude is poor. A time division multiple address (TDMA) datalink cooperative navigation algorithm based on INS/JTIDS/BA is presented in this paper. The proposed algorithm is used to revise the errors of the inertial navigation system (INS), clock bias is calibrated via round-trip timing (RTT), and altitude is located with height filter. The TDMA datalink cooperative navigation algorithm estimate errors are stated with general navigation measurements, cooperative navigation measurements, and predicted states. Weighted horizontal geometric dilution of precision (WHDOP) of the proposed algorithm and the effect of the cooperative measurements on positioning accuracy is analyzed in theory. We simulate a joint tactical information distribution system (JTIDS) network with multiple members to evaluate the performance of the proposed algorithm. The simulation results show that compared to an extended Kalman filter (EKF) that processes TOA measurements sequentially and a TDMA datalink navigation algorithm without cooperative measurements, the TDMA datalink cooperative navigation algorithm performs better.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2503
Author(s):  
Taro Suzuki ◽  
Yoshiharu Amano

This paper proposes a method for detecting non-line-of-sight (NLOS) multipath, which causes large positioning errors in a global navigation satellite system (GNSS). We use GNSS signal correlation output, which is the most primitive GNSS signal processing output, to detect NLOS multipath based on machine learning. The shape of the multi-correlator outputs is distorted due to the NLOS multipath. The features of the shape of the multi-correlator are used to discriminate the NLOS multipath. We implement two supervised learning methods, a support vector machine (SVM) and a neural network (NN), and compare their performance. In addition, we also propose an automated method of collecting training data for LOS and NLOS signals of machine learning. The evaluation of the proposed NLOS detection method in an urban environment confirmed that NN was better than SVM, and 97.7% of NLOS signals were correctly discriminated.


2019 ◽  
Vol 9 (20) ◽  
pp. 4347 ◽  
Author(s):  
Wladyslaw Koc ◽  
Cezary Specht ◽  
Jacek Szmaglinski ◽  
Piotr Chrostowski

At present, the problem of rail routes reconstruction in a global reference system is increasingly important. This issue is called Absolute Track Geometry, and its essence is the determination of the axis of railway tracks in the form of Cartesian coordinates of a global or local coordinate system. To obtain such a representation of the track centerline, the measurement methods are developed in many countries mostly by the using global navigation satellite system (GNSS) techniques. The accuracy of this type of measurement in favorable conditions reaches one centimeter. However, some specific conditions cause the additional supporting measurements with a use of such instruments as tachymetry, odometers, or accelerometers to be needed. One of the common issues of track axis reconstruction is transforming the measured GNSS antenna coordinates to the target position, i.e., to the place between rails on the level of rail heads. The authors in their previous works described the developed methodology, while this article presents a method of determining the correction of horizontal coordinates for measurements in arc sections of the railway track. The presence of a cant causes the antenna’s center to move away from the track axis, and for this reason, the results must be corrected. This article presents a method of calculation of mentioned corrections for positions obtained from mobile satellite surveying with additional inertial measurement. The algorithm presented in the article and its implementation have been illustrated on an example of a complex geometric layout, where cant transitions exist without transition curves in horizontal plane. Such a layout is not preferable due to the additional accelerations and their changes. However, it allows the verification of the presented methods.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1945 ◽  
Author(s):  
Kamil Krasuski ◽  
Damian Wierzbicki

The aim of this paper is to present the problem of the implementation of the EGNOS (European Geostationary Navigation Overlay Service) data for the processing of aircraft position determination. The main aim of the research is to develop a new computational strategy which might improve the performance of the EGNOS system in aviation, based on navigation solutions of an aircraft position, using several GNSS (Global Navigation Satellite System) onboard receivers. The results of an experimental test conducted by the Cessna 172 at EPDE (European Poland Deblin) (ICAO (International Civil Aviation Organization) code, N51°33.07’/E21°53.52’) aerodrome in Dęblin are presented and discussed in this paper. Two GNSS navigation receivers with the EGNOS positioning function for monitoring changes in the parameters of the aircraft position in real time during the landing phase were installed onboard a Cessna 172. Based on obtained research findings, it was discovered that the positioning accuracy was not higher than 2.1 m, and the integrity of positioning did not exceed 19 m. Moreover, the availability parameter was found to equal 1 (or 100%); also, no intervals in the continuity of the operation of the EGNOS system were recorded. In the paper, the results of the air test from Dęblin were compared with the parameters of positioning quality from the air test conducted in Chełm (ICAO code: EPCD, N51°04’57.8” E23°26’15”). In the air test in Chełm, the obtained parameters of EGNOS quality positioning were: better than 4.9 m for accuracy, less than 35.5 m for integrity, 100% for availability, and no breaks in continuity. Based on the results of the air tests in Dęblin and Chełm, it was concluded that the parameters of the EGNOS positioning quality in aviation for the SBAS (Satellite Based Augmentation System) APV (Approach to Vertical guidance) procedure were satisfied in accordance with the ICAO (International Civil Aviation Organization) requirements. The presented research method can be utilized in the SBAS APV landing procedure in Polish aviation. In this paper, the results of PDOP (Position Dilution of Precision) are presented and compared to the two air tests in Dęblin and Chełm. The maximum results of PDOP amounted to 1.4 in the air test in Dęblin, whereas they equaled 4.0 in the air test in Chełm. The paper also shows how the EGNOS system improved the aircraft position in relation to the only GPS solution. In this context, the EGNOS system improved the aircraft position from about 78% to 95% for each ellipsoidal coordinate axis.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7296
Author(s):  
Guanqing Li ◽  
Lasse Klingbeil ◽  
Florian Zimmermann ◽  
Shengxiang Huang ◽  
Heiner Kuhlmann

Immersed tunnel elements need to be exactly controlled during their immersion process. Position and attitude of the element should be determined quickly and accurately to navigate the element from the holding area to the final location in the tunnel trench. In this paper, a newly-developed positioning and attitude determination system, integrating a 3-antenna Global Navigation Satellite System (GNSS) system, an inclinometer and a range-measurement system, is presented. The system is designed to provide the absolute position of both ends of the element with sufficient accuracy in real time. Special attention in the accuracy analysis is paid to the influence of GNSS multipath error and sound speed profile. Simulations are conducted to illustrate the performance of the system in different scenarios. If both elements are very close, the accuracies of the system are higher than 0.02 m in the directions perpendicular to and along the tunnel axis.


2020 ◽  
Vol 8 ◽  
Author(s):  
Shun-ichi Watanabe ◽  
Tadashi Ishikawa ◽  
Yusuke Yokota ◽  
Yuto Nakamura

Global Navigation Satellite System–Acoustic ranging combined seafloor geodetic technique (GNSS-A) has extended the geodetic observation network into the ocean. The key issue for analyzing the GNSS-A data is how to correct the effect of sound speed variation in the seawater. We constructed a generalized observation equation and developed a method to directly extract the gradient sound speed structure by introducing appropriate statistical properties in the observation equation, especially the data correlation term. In the proposed scheme, we calculate the posterior probability based on the empirical Bayes approach using the Akaike’s Bayesian Information Criterion for model selection. This approach enabled us to suppress the overfitting of sound speed variables and thus to extract simpler sound speed field and stable seafloor positions from the GNSS-A dataset. The proposed procedure is implemented in the Python-based software “GARPOS” (GNSS-Acoustic Ranging combined POsitioning Solver).


2014 ◽  
Vol 67 (6) ◽  
pp. 1109-1119 ◽  
Author(s):  
Shengyue Ji ◽  
Xiaolong Wang ◽  
Ying Xu ◽  
Zhenjie Wang ◽  
Wu Chen ◽  
...  

Fast high precision relative Global Navigation Satellite System (GNSS) positioning is very important to various applications and ambiguity resolution is a key requirement. It has been a continuing challenge to determine and fix GNSS carrier-phase ambiguity, especially for medium- and long-distance baselines. In past research, with dual-frequency band Global Positioning System (GPS), it is almost impossible for fast ambiguity resolution of medium- and long-distance baselines mainly due to the ionospheric and tropospheric effects. With the launch of the BeiDou system, triple-frequency band GNSS observations are available for the first time. This research aims to test the ambiguity resolution performance with BeiDou triple-frequency band observations. In this research, two mathematical models are compared: zenith tropospheric delay as an unknown parameter versus corrected tropospheric delay. The ambiguity resolution performance is investigated in detail with BeiDou observations. Different distance baselines are tested: 45 km, 70 km and 100 km and the performances are investigated with different elevation cut-off angles. Also the performance with BeiDou alone and combined BeiDou and GPS are compared. Experimental results clearly show that with practical observations of triple-frequency bands, ambiguity of medium- or long-distance baselines can be fixed. The results also show that: the performance of ambiguity resolution with an elevation cutoff angle of 20° is much better than that of 15°; The performance with tropospheric effect corrected is slightly better than that with tropospheric effect as an estimated parameter; Dual-frequency band GPS observations will benefit ambiguity resolution of integrated BeiDou and GPS.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1120 ◽  
Author(s):  
Chuanzhen Sheng ◽  
Xingli Gan ◽  
Baoguo Yu ◽  
Jingkui Zhang

In urban canyon environments, Global Navigation Satellite System (GNSS) satellites are heavily obstructed with frequent rise and fall and severe multi-path errors induced by signal reflection, making it difficult to acquire precise, continuous, and reliable positioning information. To meet imperative demands for high-precision positioning of public users in complex environments, like urban canyons, and to solve the problems for GNSS/pseudolite positioning under these circumstances, the Global Navigation Satellite System (GNSS) Precision Point Positioning (PPP) algorithm combined with a pseudolite (PLS) was introduced. The former problems with the pseudolite PPP technique with distributed pseudo-satellites, which relies heavily on known points for initiation and prerequisite for previous high-precision time synchronization, were solved by means of a real-time equivalent clock error estimation algorithm, ambiguity fixing, and validation method. Experiments based on a low-cost receiver were performed, and the results show that in a weak obstructed environment with low-density building where the number of GNSS satellites was greater than seven, the accuracy of pseudolite/GNSS PPP with fixed ambiguity was better than 0.15 m; when there were less than four GNSS satellites in severely obstructed circumstances, it was impossible to obtain position by GNSS alone, but with the support of a pseudolite, the accuracy of PPP was able to be better than 0.3 m. Even without GNSS, the accuracy of PPP could be better than 0.5 m with only four pseudolites. The pseudolite/GNSS PPP algorithm presented in this paper can effectively improve availability with less GNSS or even without GNSS in constrained environments, like urban canyons in cities.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5917
Author(s):  
Guangxing Wang ◽  
Yadong Bo ◽  
Qiang Yu ◽  
Min Li ◽  
Zhihao Yin ◽  
...  

With the development of Global Navigation Satellite System (GNSS) and the opening of Application Programming Interface (API) of Android terminals, the positioning research of Android terminals has attracted the attention of GNSS community. In this paper, three static experiments were conducted to analyze the raw GNSS observations quality and positioning performances of the smartphones. For the two experimental smartphones, the numbers of visible satellites with dual-frequency signals are unstable and not enough for dual-frequency Precise Point Positioning (PPP) processing all through the day. Therefore, the ionosphere-constrained single-frequency PPP model was employed to improve the positioning with the smartphones, and its performance was evaluated and compared with those of the Single Point Positioning (SPP) and the traditional PPP models. The results show that horizontal positioning accuracies of the smartphones with the improved PPP model are better than 1 m, while those with the SPP and the traditional PPP models are about 2 m.


Author(s):  
В.Ф. Фатеев ◽  
Ю.Ф. Смирнов ◽  
А.И. Жариков ◽  
Е.А. Рыбаков ◽  
Ф.Р. Смирнов

The results of an experiment on time scale transmission to a remote consumer using the relativistic synchronization method are presented. The transmission of the time scale is carried out using a Transported Quantum Clock on an automobile chassis along federal roads for a distance of over 5 thousand kilometers. The results obtained were confirmed by an independent method for comparing time scales based on Global Navigation Satellite System signals. The error of the relativistic synchronization method does not exceed 150 ps, which is significantly better than using other methods.


Sign in / Sign up

Export Citation Format

Share Document