scholarly journals Assessment of the Positioning Accuracy of DGPS and EGNOS Systems in the Bay of Gdansk using Maritime Dynamic Measurements

2018 ◽  
Vol 72 (3) ◽  
pp. 575-587 ◽  
Author(s):  
Cezary Specht ◽  
Jan Pawelski ◽  
Leszek Smolarek ◽  
Mariusz Specht ◽  
Pawel Dabrowski

Differential Global Positioning Systems (DGPS) and the European Geostationary Navigation Overlay Service (EGNOS) are included in a group of supporting systems (Ground-Based Augmentation System (GBAS)/Space-Based Augmentation System (SBAS)) for the American GPS. Their main task is to ensure better positioning characteristics (accuracy, reliability, continuity and availability) compared to GPS. Therefore, they are widely applied wherever GPS failures affect human safety, mainly in aviation, land and marine navigation. The aim of this paper is to assess the predictable positioning accuracy of DGPS and EGNOS receivers using a vessel manoeuvring in the Bay of Gdansk. Two receivers were used in the study: a Simrad MXB5 (DGPS) and a Trimble GA530 (EGNOS), which were simultaneously recording their coordinates. The obtained values were compared with the trajectory computed using a geodetic Global Navigation Satellite System (GNSS) receiver (Trimble R10) connected to a GNSS network, ensuring an accuracy of 2–3 cm (p = 0·95). During a four-hour measurement session, the accuracy statistics of these systems were determined based on around 11,500 positionings. Studies have shown that both positioning systems ensure a similar level of accuracy of their positioning services (approximately 0·5–2 m) and they meet the accuracy requirements set in published standards.

Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3860 ◽  
Author(s):  
Specht

According to the IHO (International Hydrographic Organization) S-44 standard, hydrographic surveys can be carried out in four categories, the so-called orders—special, 1a, 1b, and 2—for which minimum accuracy requirements for the applied positioning system have been set out. These amount to, respectively: 2 m, 5 m, 5 m, and 20 m at a confidence level of 0.95. It is widely assumed that GNSS (Global Navigation Satellite System) network solutions with an accuracy of 2–5 cm (p = 0.95) and maritime DGPS (Differential Global Positioning System) systems with an error of 1–2 m (p = 0.95) are currently the two main positioning methods in hydrography. Other positioning systems whose positioning accuracy increases from year to year (and which may serve as alternative solutions) have been omitted. The article proposes a method that enables an assessment of any given navigation positioning system in terms of its compliance (or non-compliance) with the minimum accuracy requirements specified for hydrographic surveys. The method concerned clearly assesses whether a particular positioning system meets the accuracy requirements set out for a particular IHO order. The model was verified, taking into account both past and present research results (stationary and dynamic) derived from tests on the following systems: DGPS, EGNOS (European Geostationary Navigation Overlay Service), and multi-GNSS receivers (GPS/GLONASS/BDS/Galileo). The study confirmed that the DGPS system meets the requirements for all IHO orders and proved that the EGNOS system can currently be applied in measurements in the orders 1a, 1b, and 2. On the other hand, multi-GNSS receivers meet the requirements for order 2, while some of them meet the requirements for orders 1a and 1b as well.


1998 ◽  
Vol 51 (3) ◽  
pp. 382-393 ◽  
Author(s):  
M. Tsakiri ◽  
M. Stewart ◽  
T. Forward ◽  
D. Sandison ◽  
J. Walker

The increasing volume of traffic in urban areas has resulted in steady growth of the mean driving time on fixed routes. Longer driving times lead to significantly higher transportation costs, particularly for vehicle fleets, where efficiency in the distribution of their transport tasks is important in staying competitive in the market. For bus fleets, the optimal control and command of the vehicles is, as well as the economic requirements, a basic function of their general mission. The Global Positioning System (GPS) allows reliable and accurate positioning of public transport vehicles except within the physical limitations imposed by built-up city ‘urban canyons’. With a view to the next generation of satellite positioning systems for public transport fleet management, this paper highlights the limitations imposed on current GPS systems operating in the urban canyon. The capabilities of a future positioning system operating in this type of environment are discussed. It is suggested that such a system could comprise receivers capable of integrating the Global Positioning System (GPS) and the Russian equivalent, the Global Navigation Satellite System (GLONASS), and relatively cheap dead-reckoning sensors.


2021 ◽  
Vol 17 (5) ◽  
pp. 155014772110167
Author(s):  
Fan Qin ◽  
Linxia Fu ◽  
Yuanqing Wang ◽  
Yi Mao

Global navigation satellite system is indispensable to provide positioning, navigation, and timing information for pedestrians and vehicles in location-based services. However, tree canopies, although considered as valuable city infrastructures in urban areas, adversely degrade the accuracy of global navigation satellite system positioning as they attenuate the satellite signals. This article proposes a bagging tree-based global navigation satellite system pseudorange error prediction algorithm, by considering two variables, including carrier to noise C/ N0 and elevation angle θe to improve the global navigation satellite system positioning accuracy in the foliage area. The positioning accuracy improvement is then obtained by applying the predicted pseudorange error corrections. The experimental results shows that as the stationary character of the geostationary orbit satellites, the improvement of the prediction accuracy of the BeiDou navigation satellite system solution (85.42% in light foliage and 83.99% in heavy foliage) is much higher than that of the global positioning system solution (70.77% in light foliage and 73.61% in heavy foliage). The positioning error values in east, north, and up coordinates are improved by the proposed algorithm, especially a significant decrease in up direction. Moreover, the improvement rate of the three-dimensional root mean square error of positioning accuracy in light foliage area test is 86% for BeiDou navigation satellite system/global positioning system combination solutions, while the corresponding improvement rate is 82% for the heavy foliage area test.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7413
Author(s):  
Andrzej Stateczny ◽  
Cezary Specht ◽  
Mariusz Specht ◽  
David Brčić ◽  
Alen Jugović ◽  
...  

Hydrographic surveys, in accordance with the International Hydrographic Organization (IHO) S-44 standard, can be carried out in the following five orders: Exclusive, Special, 1a, 1b and 2, for which minimum accuracy requirements for the applied positioning system have been set out. They are as follows, respectively: 1, 2, 5, 5 and 20 m, with a confidence level of 95% in two-dimensional space. The Global Navigation Satellite System (GNSS) network solutions (accuracy: 2–3 cm (p = 0.95)) and the Differential Global Positioning System (DGPS) (accuracy: 1–2 m (p = 0.95)) are now commonly used positioning methods in hydrography. Due to the fact that a new order of hydrographic surveys has appeared in the IHO S-44 standard from 2020—Exclusive, looking at the current positioning accuracy of the DGPS system, it is not known whether it can be used in it. The aim of this article is to determine the usefulness of GNSS/Inertial Navigation Systems (INS) for hydrographic surveys. During the research, the following two INSs were used: Ekinox2-U and Ellipse-D by the SBG Systems, which were supported by DGPS and Real Time Kinematic (RTK) receivers. GNSS/INS measurements were carried out during the manoeuvring of the Autonomous/Unmanned Surface Vehicle (ASV/USV) named “HydroDron” on Kłodno lake in Zawory. The acquired data were processed using the mathematical model that allows us to assess whether any positioning system at a given point in time meets (or not) the accuracy requirements for each IHO order. The model was verified taking into account the historical and current test results of the DGPS and RTK systems. Tests have confirmed that the RTK system meets the requirements of all the IHO orders, even in situations where it is not functioning 100% properly. Moreover, it was proven that the DGPS system does not only meet the requirements provided for the most stringent IHO order, i.e., the Exclusive Order (horizontal position error ≤ 1 m (p = 0.95)). Statistical analyses showed that it was only a few centimetres away from meeting this criterion. Therefore, it can be expected that soon it will be used in all the IHO orders.


2021 ◽  
Author(s):  
J. Robert ◽  
Michael Forte

This Coastal and Hydraulic Engineering Technical Note (CHETN) details an evaluation of three Global Navigation Satellite System (GNSS)/Global Positioning System (GPS) real-time correction methods capable of providing centimeter-level positioning. Internet and satellite-delivered correction systems, Real Time Network (RTN) and Real Time eXtended (RTX), respectively, are compared to a traditional ground-based two-way radio transmission correction system, generally referred to as Local RTK, or simply RTK. Results from this study will provide prospective users background information on each of these positioning systems and comparisons of their respective accuracies during in field operations.


2021 ◽  
Vol 3 (2) ◽  
pp. 21-28
Author(s):  
Kiat Teh Choon ◽  
Kit Wong Wai ◽  
Soe Min Thu

Vision based patrol robot has been with great interest nowadays due to its consistency, cost effectiveness and no temperament issue. In recent times, Global positioning system (GPS) has been cooperated with Global Navigation Satellite System (GNSS) to come out with better accuracy quality in positioning, navigation, and timing (PNT) services to locate a device. However, such localization service is yet to reach any indoor facility. For an indoor surveillance vision based patrol robot, such limitation hinders its path planning capabilities that allows the patrol robot to seek for the optimum path to reach the appointed destination and return back to its home position. In this paper, a vision based indoor surveillance patrol robot using sensory manipulation technique is presented and an extended Dijkstra algorithm is proposed for the patrol robot path planning. The design of the patrol robot adopted visual type sensor, range sensors and Inertia Measurement Unit (IMU) system to impulsively update the map’s data in line with the patrol robot’s current path and utilize the path planning features to carry out obstacle avoidance and re-routing process in accordance to the obstacle’s type met by the patrol robot. The result conveyed by such approach certainly managed to complete multiple cycles of testing with positive result.


2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


Signals ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 121-137
Author(s):  
Haidy Y. F. Elghamrawy ◽  
Mohamed Tamazin ◽  
Aboelmagd Noureldin

There is a growing demand for robust and accurate positioning information for various applications, including the self-driving car industry. Such applications rely mainly on the Global Navigation Satellite System (GNSS), including the Global Positioning System (GPS). However, GPS positioning accuracy relies on several factors, such as satellite geometry, receiver architecture, and navigation environment, to name a few. In urban canyons in which there is a significant probability of signal blockage of one or more satellites and/or interference, the positioning accuracy of scalar-based GPS receivers drastically deteriorates. On the other hand, vector-based GPS receivers exhibit some immunity to momentary outages and interference. Therefore, it is becoming necessary to consider vector-based GPS receivers for several applications, especially safety-critical applications, including next-generation navigation technologies for autonomous vehicles. This paper investigates a vector-based receiver’s performance and compares it to its scalar counterpart in signal degraded conditions. The realistic simulation experiments in this paper are conducted on GPS L1 C/A signals generated using the SpirentTM simulation system to create a fully controlled environment to examine and validate the performance. The results show that the vector tracking system outperforms the scalar tracking in terms of position and velocity estimation accuracy in signal-degraded environments.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1945 ◽  
Author(s):  
Kamil Krasuski ◽  
Damian Wierzbicki

The aim of this paper is to present the problem of the implementation of the EGNOS (European Geostationary Navigation Overlay Service) data for the processing of aircraft position determination. The main aim of the research is to develop a new computational strategy which might improve the performance of the EGNOS system in aviation, based on navigation solutions of an aircraft position, using several GNSS (Global Navigation Satellite System) onboard receivers. The results of an experimental test conducted by the Cessna 172 at EPDE (European Poland Deblin) (ICAO (International Civil Aviation Organization) code, N51°33.07’/E21°53.52’) aerodrome in Dęblin are presented and discussed in this paper. Two GNSS navigation receivers with the EGNOS positioning function for monitoring changes in the parameters of the aircraft position in real time during the landing phase were installed onboard a Cessna 172. Based on obtained research findings, it was discovered that the positioning accuracy was not higher than 2.1 m, and the integrity of positioning did not exceed 19 m. Moreover, the availability parameter was found to equal 1 (or 100%); also, no intervals in the continuity of the operation of the EGNOS system were recorded. In the paper, the results of the air test from Dęblin were compared with the parameters of positioning quality from the air test conducted in Chełm (ICAO code: EPCD, N51°04’57.8” E23°26’15”). In the air test in Chełm, the obtained parameters of EGNOS quality positioning were: better than 4.9 m for accuracy, less than 35.5 m for integrity, 100% for availability, and no breaks in continuity. Based on the results of the air tests in Dęblin and Chełm, it was concluded that the parameters of the EGNOS positioning quality in aviation for the SBAS (Satellite Based Augmentation System) APV (Approach to Vertical guidance) procedure were satisfied in accordance with the ICAO (International Civil Aviation Organization) requirements. The presented research method can be utilized in the SBAS APV landing procedure in Polish aviation. In this paper, the results of PDOP (Position Dilution of Precision) are presented and compared to the two air tests in Dęblin and Chełm. The maximum results of PDOP amounted to 1.4 in the air test in Dęblin, whereas they equaled 4.0 in the air test in Chełm. The paper also shows how the EGNOS system improved the aircraft position in relation to the only GPS solution. In this context, the EGNOS system improved the aircraft position from about 78% to 95% for each ellipsoidal coordinate axis.


Sign in / Sign up

Export Citation Format

Share Document