Influence of fuelwood trees on sodic soils

1992 ◽  
Vol 22 (5) ◽  
pp. 729-735 ◽  
Author(s):  
V.K. Garg ◽  
R.K. Jain

The persistent acute fuelwood shortage problem in India has necessitated having tree plantations on waste lands to obtain renewable energy. Fuelwood production screening trials initiated in 1981 at the Biomass Research Centre in Banthra, India (of the National Botanical Research Institute, Lucknow, India), identified babul, Acacianilotica (L.) Willd. ex Delile, and mesquite, Prosopisjuliflora (Swartz) DC, to be the most promising and suitable leguminous trees in terms of biomass production on sodic sites. A study was carried out to assess soil enrichment due to the growth of these fuelwood trees planted a decade past on sodic soil that had had no other amendments. Results showed preferential nutrient accumulation and greater reduction in soil pH (from 9.5 to 7.9) and exchangeable sodium (from 30 to 8%) at the P. juliflora plantation compared with at the A. nilotica plantation. There was also a reduction in surface soil (0–15 cm) bulk density, but an enhancement in porosity and water holding capacity, making soil more friable. The P. juliflora plantation produced markedly more leaf litter (6.1 t•ha−1•year−1) than the A. nilotica plantation (5.7 t•ha−1•year−1). Both the species had fibrous lateral root systems on the surface in the sodic soil. However, the penetration and spread of roots were almost 2-fold greater in P. juliflora than in A. nilotica. Thus, the potential magnitude of changes in soil properties was related to the distribution of roots and amount of litter falling on the soil surface. Prosopisjuliflora appeared to be better than A. nilotica under adverse sodic soil conditions in establishing an enlarged plant-litter nutrient cycle relationship. This study also provides an assessment of soil amelioration by leguminous trees under short-rotation forestry practices.

1994 ◽  
Vol 21 (3) ◽  
pp. 236-241 ◽  
Author(s):  
Khalid Mahmood ◽  
Kauser A. Malik ◽  
M.A.K. Lodhi ◽  
Khalid Hamid Sheikh

An ecological survey of undisturbed saline wastelands and adjacent fields of Kallar Grass (Leptochloa fusca) was undertaken to study species distribution in relation to soil conditions and changes in species composition during amelioration processes. Five plant communities, represented by Atriplex crassifolia C.A. Mey., Cynodon dactylon (L.) Pers., Desmostachya bipinnata (L.) Stapf, Suaeda fruticosa (L.) Forssk., and Eleusine flagellifera Nees, had colonized undisturbed areas. Soils of plant communities dominated by these species showed significant variations in salinity and sodicity. S. fruticosa was dominant on highly saline–sodic soil, Cynodon on slightly saline and moderately sodic soil, whereas D. bipinnata showed little variation in cover percentage with changes in salinity and sodicity of soil. These three species had wide ecological amplitude compared with E. flagellifera and A. crassifolia, which were restricted to non-saline and marginally saline–sodic soils, respectively.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 480 ◽  
Author(s):  
Bushra Niamat ◽  
Muhammad Naveed ◽  
Zulfiqar Ahmad ◽  
Muhammad Yaseen ◽  
Allah Ditta ◽  
...  

Soil salinity and sodicity are among the main problems for optimum crop production in areas where rainfall is not enough for leaching of salts out of the rooting zone. Application of organic and Ca-based amendments have the potential to increase crop yield and productivity under saline–alkaline soil environments. Based on this hypothesis, the present study was conducted to evaluate the potential of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) to increase growth and yield of maize under saline–sodic soil conditions. Saline–sodic soil conditions with electrical conductivity (EC) levels (1.6, 5, and 10 dS m−1) and sodium adsorption ratio (SAR) = 15, were developed by spiking soil with a solution containing NaCl, Na2SO4, MgSO4, and CaCl2. Results showed that soil salinity and sodicity significantly reduced plant growth, yield, physiological, and nutrient uptake parameters. However, the application of Ca-FC caused a remarkable increase in the studied parameters of maize at EC levels of 1.6, 5, and 10 dS m−1 as compared to the control. In addition, Ca-FC caused the maximum decrease in Na+/K+ ratio in shoot up to 85.1%, 71.79%, and 70.37% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. Moreover, nutrient uptake (NPK) was also significantly increased with the application of Ca-FC under normal as well as saline–sodic soil conditions. It is thus inferred that the application of Ca-FC could be an effective amendment to enhance growth, yield, physiology, and nutrient uptake in maize under saline–sodic soil conditions constituting the novelty of this work.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Chusnul Arif ◽  
Budi Indra Setiawan ◽  
Satyanto Krido Saptomo ◽  
Hiroshi Matsuda ◽  
Koremasa Tamura ◽  
...  

Subsurface drainage technology may offer a useful option in improving crop productivity by preventing water-logging in poor drainage paddy fields. The present study compared two paddy fields with and without sheet-pipe type subsurface drainage on land and water productivities in Indonesia. Sheet-pipe typed is perforated plastic sheets with a hole diameter of 2 mm and made from high-density polyethylene. It is commonly installed 30–50 cm below the soil surface and placed horizontally by a machine called a mole drainer, and then the sheets will automatically be a capillary pipe. Two fields were prepared, i.e., the sheet-pipe typed field (SP field) and the non-sheet-pipe typed field (NSP field) with three rice varieties (Situ Bagendit, Inpari 6 Jete, and Inpari 43 Agritan). In both fields, weather parameters and water depth were measured by the automatic weather stations, soil moisture sensors and water level sensors. During one season, the SP field drained approximately 45% more water compared to the NSP field. Thus, it caused increasing in soil aeration and producing a more significant grain yield, particularly for Inpari 43 Agritan. The SP field produced a 5.77 ton/ha grain yield, while the NSP field was 5.09 ton/ha. By producing more grain yield, the SP field was more effective in water use as represented by higher water productivity by 20%. The results indicated that the sheet-pipe type system developed better soil aeration that provides better soil conditions for rice.


Author(s):  
A. Liatukienė ◽  
R. Skuodienė

Abstract The morphological traits of alfalfa under acid soil conditions with different mobile aluminium (Al) concentrations were investigated. The study site was Vėžaičiai Branch of the Lithuanian Research Centre for Agriculture and Forestry, 55°70 N, 21°49 E. The experiment featuring the 30 most Al-tolerant alfalfa accessions (populations and cultivars), determined from laboratory trials was established on a Bathygleyic Dystric Retisol in 2018. In 2019 and 2020, the biological and morphological traits were evaluated: plant regrowth, plant height before flowering, wintering, leafiness, stem thickness, plant vigour, stem density, seed yield and resistance to spring black stem leaf spot. The resistance of alfalfa to mobile Al toxicity was determined using a filter-based screening method of selection cycles C1 and C2. The accessions grown in the soil with mobile Al (20.6–23.4 mg/kg) showed better tolerance to Al toxicity in the cycle C2. The hypocotyl tolerance index of these accessions was better at 8, 16, 32 and 64 mm AlCl3 concentrations in the cycle C2. The correlation analysis showed strong significant positive and negative relationships between the morphological traits. A cluster analysis showed that the accessions, grown in the soil with mobile Al (20.6–23.4 mg/kg) were the most resistant to Al toxicity in the cycle C2. These accessions produced a better seed yield and demonstrated lower values of morphological traits compared to cluster 2. Also, these accessions are considered as tolerant to mobile Al toxicity and might be used as donors in breeding for Al toxicity tolerance.


Author(s):  
Petrônio D. dos Santos ◽  
Lourival F. Cavalcante ◽  
Hans R. Gheyi ◽  
Geovani S. de Lima ◽  
Everaldo M. Gomes ◽  
...  

ABSTRACT Correction of saline and sodic soils aims to reduce salts dissolved in the solution and exchangeable sodium, respectively, to allow the growth and production of crops. In this context, an experiment was carried out between August/2011 and September/2012, in saline-sodic soil of the Irrigated Perimeter of São Gonçalo, in the municipality of Sousa, PB, Brazil. Agricultural gypsum, organic sources and continuous leaching for reducing salinity, sodicity and alkalinity in the saline-sodic soil and their effects on the production of the sunflower cultivar Embrapa 122/V-2000 and the rice variety Diamante were evaluated. The treatments were distributed in four randomized blocks and the soil was subjected to continuous leaching for 50 days and evaluated for salinity, sodicity and alkalinity before and after leaching, as well after sunflower and rice cultivation, in the 0-0.20 and 0.20-0.40 m layers. Leaching and the application of gypsum and organic sources reduced the initial salinity in both soil layers, to a greater extent in the surface layer. Exchangeable sodium decreased in 0-0.20 m and increased in 0.20-0.40 m. After rice cultivation, the soil in the 0-0.20 m layer changed from saline-sodic to non-saline in the treatments gypsum + bovine manure and gypsum + rice husk. The reduction of salinity, sodicity and alkalinity in the soil was higher during rice cultivation than during sunflower cultivation.


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4377
Author(s):  
Sabino Pereira da Silva Neto ◽  
Antonio Clementino dos Santos ◽  
Raimundo Laerton de Lima Leite ◽  
José Expedito Cavalcante da Silva ◽  
Durval Nolasco Neves Neto ◽  
...  

This study aimed to quantify, describe, and identify plant litter production and nutrient accumulation zones in different forest-pasture integration (FPI) systems and forest strata of the Cerrado-Amazon transition on typical orthic Quartzarenic Neosol using spatial analysis, principal component analysis, and non-hierarchical fuzzy k-mean clustering logic techniques. The evaluations were performed at two FPI systems comprising a combination of Brachiaria brizantha cv. Marandu and thinned native vegetation with 50 and 75% (FPI-I and FPI-II, respectively) shade in an original thinned forest (NFI) and in an original intact forest (NF-II) with 80 and 95% shade, respectively. An area of 4,000 m² (40 x 100 m) that contained 32 sampling points arranged in a 4 x 25 m grid was demarcated for each treatment. Plant litter was collected using 32 collectors installed at equidistant points. Twelve nylon bags were placed on the soil surface at each point to evaluate the plant litter decomposition, totaling 384 bags per treatment. It was possible to quantify, describe, and define plant litter production and nutrient accumulation zones in different FPI systems and forest strata of the Cerrado-Amazon transition on orthic Quartzarenic Neosol using geostatistical analysis, principal components, and non-hierarchical fuzzy k-mean clustering logic procedures.


Soil Research ◽  
1994 ◽  
Vol 32 (3) ◽  
pp. 543 ◽  
Author(s):  
GJ Blair ◽  
AR Till ◽  
C Boswell

The recycling of S from plant litter, dung and urine is an important process for supplying S for pastures. A pot experiment was conducted where 35S-labelled litter (25% white clover/38% ryegrass/21% weed) and S-35-labelled urine and faeces collected from sheep fed the same herbage as was used as litter was surface applied to pots and the fate of the applied S was followed for 100 days with ryegrass as the test plant. In camp soil, 45% of the S applied in urine was taken up by ryegrass plants within 12 days of application. In non-camp soil, the uptake of urine-S was about 20% over the same period. Cumulative uptake of 35S from urine in camp soil was subsequently restricted, with a maximum of 60% eventually measured in plants after 100 days. Mean rates of release of S (0-37 days) from litter and faeces was respectively 16.2 and 4.5 mg g-1 day-1. The calculated half-times from S in the two materials were respectively 43 and 154 days under controlled environmental conditions with adequate moisture. Litter S followed organic matter (OM) decomposition, but faecal S release was initially more rapid than faecal OM decomposition. There was little S release from faeces after day 25. Rather, S was immobilized in faeces during the 25-100 day period. The decomposition of litter and faeces was divided into an initial rapid process during which soluble S and more labile S was released, followed by a slower process involving the release of S from tissues more resistant to mineralization. The uptake of 35S from labelled materials was initially more rapid than would be expected for total S released from the added litter and faeces and the 35Suptake effect was short-lived relative to the continued effect of added material on total S uptake. The preferential uptake of 35S from the surface-applied material appears to be due to limited root development at the early stages of the experiment. Movement of 35S into the soil organic matter pool was very rapid; 58.4% of urine S was in the soil organic matter fraction in the non-camp soil by day 6. The amount of applied S in the organic matter equilibrated at about day 75. The accumulation of applied S from the materials added was greater than that recorded in previously reported studies for inorganic sulfate (e.g. about 50%). Soil P and S status had little effect on rates of release of S. from the applied materials, however, the effect of the camp and non-camp soil on total S recycling was markedly different as a result of the different amounts of plant growth and thus S uptake in the two soils. The decomposition of litter indicated peak rates of S release at two specific times over the 100 days and indicated successional changes in micro-organism activity. With faeces, the experiment was not continued for sufficiently long to show micro-organism effects.


1962 ◽  
Vol 42 (1) ◽  
pp. 43-48 ◽  
Author(s):  
J. C. Van Schaik ◽  
R. A. Milne

Leaching studies showed that shallow glacial soils that have become saline-sodic can be reclaimed with tile drains installed at a depth of 30 inches with a 30-foot spacing. The glacial till at the experimental site occurred at a depth of 2 to 3 feet below the surface and was slowly permeable. Only after the application of 71 inches of water was the saline-sodic soil sufficiently reclaimed to allow normal plant growth. Some decrease in salt concentration was found below the tile drains. There was no difference in salt movement with respect to proximity to the tile lines. The development of non-saline-sodic soils was not evident during the trial. Most of the gypsum applied during the trial remained in the surface 6 inches after the final water application.


Sign in / Sign up

Export Citation Format

Share Document