Effects of Impulse Current on Mechanical Behavior of Ti and Ta

2013 ◽  
Vol 763 ◽  
pp. 97-101
Author(s):  
Yao Li ◽  
Jun Jie Yang ◽  
Ping Xue ◽  
Wu Xin Yu ◽  
Zhi Jiang Zuo ◽  
...  

In this paper, pure metals Ti and Ta were used to study the effects of impulse current on their mechanical properties. The results showed that the impulse current caused the tensile strength of the two metals to decline remarkably. The elongation of metal Ta rose and was enhanced with increasing current density. But as for metal Ti, the elongation hardly rose. Theoretical analysis suggested that the impulse current had little apparent effect on HCP metals, for it had less slip systems; however, it had obvious effects on the elongation of BCC metals, for they had more potential slip systems. The transmission electron microscopy (TEM) observations showed that crystal microstructure of the two metals had not changed significantly.

Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


2021 ◽  
Vol 1026 ◽  
pp. 84-92
Author(s):  
Tao Qian Cheng ◽  
Zhi Hui Li

Al-Zn-Mg-Cu alloy have been widely used in aerospace industry. However, there is still a lack of research on thermal stability of Al-Zn-Mg-Cu alloy products. In the present work, an Al-Zn-Mg-Cu alloy with T79 and T74 states was placed in the corresponding environment for thermal exposure experiments. Performance was measured by tensile strength, hardness and electrical conductivity. In this paper, precipitation observation was analyzed by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HREM). The precipitations of T79 state alloy were GPⅡ zone, η' phase and η phase while the ultimate tensile strength, hardness and electrical conductivity were 571MPa, 188.2HV and 22.2MS×m-1, respectively. The mechanical property of T79 state alloy decreased to 530MPa and 168.5HV after thermal exposure. The diameter of precipitate increased and the precipitations become η' and η phase at the same time. During the entire thermal exposure, T74 state alloy had the same mechanical property trend as T79 state alloy. The precipitate diameter also increased while the types of precipitate did not change under thermal exposure. The size of precipitates affected the choice of dislocation passing through the particles to affect the mechanical properties.


2017 ◽  
Vol 62 (4) ◽  
pp. 2441-2448
Author(s):  
T. Jung ◽  
W. Kwaśny ◽  
Z. Rdzawski ◽  
W. Głuchowski ◽  
K. Matus ◽  
...  

AbstractThis paper presents the study of repetitive corrugation process influence on the strengthening of annealed alloy. Based on the results of mechanical properties of deformed sample, it has been found that the microhardness, ultimate tensile strength, yield strength and apparent elastic limit are significantly increased in relation to annealed sample. Examination on transmission electron microscopy confirmed the effect of intensive plastic deformation on structure fragmentation in the nanometric scale. This work confirmed the possibility of using the repetitive corrugation process to increase mechanical properties of CuCr0.6 alloy.


2013 ◽  
Vol 591 ◽  
pp. 245-248 ◽  
Author(s):  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Tao Feng ◽  
Hai Fang Xu ◽  
Dan Yu Jiang

In some applications such as automotive oxygen sensor, 5mol% Y2O3stabilized zirconia (5YSZ) is generally used because it has both excellent ionic conductivity and mechanical properties. The automotive oxygen sensor would experience a cyclic change from high temperature (engine running) environment to the low temperature damp environment (in the tail pipe when vehicle stops). The conductivity change with coupled conditions of thermal cycle and dump environment in the 5mol%Y2O3ZrO2(5YSZ) system was examined by XRD,Impedance spectroscopy and transmission electron microscopy (SEM) in this paper.


2011 ◽  
Vol 311-313 ◽  
pp. 1044-1048
Author(s):  
Hong Long Xing ◽  
Shui Lin Chen

Polyacrylate microgel emulsion was prepared by emulsion polymerization using styrene, α-n-butyl acrylate and methyl methacrylate as monomer, polyoxyethylene octylphenol ether (TX-30) and sodium dodecyl sulfate(SDS) as combine emulsifier, divinyl benzene and ammonium persulfate (APS) as initiator,respectively. The prepared microgel was analyzed by a variety of measurment methods, such as Fourier transform infrared spectroscopy and transmission electron microscopy. The effect of microgel on the rheological properties of adhesives, leveling, mechanical properties and pigment printing performance was studied. The rhelogy and the color fastness of the pigment printing binder of printed fabrics were measured by rheometer and friction color fastness test instruments, respectively. At the same time, the mechanical properties of the adhesive film was measured by strength tester. The results show that the thixotropy, leveling and mechanical properties of adhesive printing binder and pringting quality of coating fabrics were improved when the microgel was added.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3351 ◽  
Author(s):  
Wei Chen ◽  
Xiaoyong Zhang ◽  
YongCheng Lin ◽  
Kechao Zhou

Multi-pass hot rolling was performed on bi-modal Ti-55511 alloy with 50% rolling reduction at 700 °C. Mechanical properties were evaluated by tensile test, and microstructure evolution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the Ti-55511 alloy with bi-modal microstructure exhibits good strength and high ductility (1102 MPa, 21.7%). Comparatively, after 50% hot rolling, an enhanced strength and decreased ductility were obtained. The refinement of α phases leads to the increased tensile strength, while the fragmentation of the equiaxed α phase results in a decreased ductility. The fragmentation process of equiaxed α phases followed the sequence of: elongation of α phases → formation of grooves and localized shear bands → the final fragmentation accomplished via deepening grooves.


2016 ◽  
Vol 852 ◽  
pp. 33-37
Author(s):  
Xing Long Xu ◽  
Dong Yan Ding ◽  
Wen Long Zhang ◽  
Yong Jin Gao ◽  
Guo Zhen Chen ◽  
...  

7072Al is widely used as cladding layer for heat-transfer components. In this paper, the microstructure, mechanical properties and electrochemical properties of simulated-brazing 7072Al alloy with Zn addition were investigated. Transmission electron microscopy (TEM) observations revealed that, in the simulated-brazing state, Zn-addition could promote the precipitation in the 7072Al alloy. Tensile testing results indicated that, in comparison with 7072Al alloy, the mechanical properties were improved after Zn-addition. Electrochemical testing results revealed that the simulated-brazing alloy showed a negative shift of the corrosion potential with the addition of Zn element.


2007 ◽  
Vol 550 ◽  
pp. 193-198
Author(s):  
Edgar F. Rauch ◽  
G. Shigesato

The dislocation substructure that appears in deformed metals and alloys have been extensively investigated in the past by transmission electron microscopy (TEM). They are known to form a broad variety of microstructures. These substructures are characterized by three main parameters, namely the density of the dislocations that are trapped in the tangles, their degree of patterning and the misorientation between the cells. The aim of the present work is to investigate the relationship between these features and the mechanical properties of the material.


2018 ◽  
Vol 941 ◽  
pp. 1613-1617 ◽  
Author(s):  
Li Jun Peng ◽  
Xu Jun Mi ◽  
Hao Feng Xie ◽  
Yang Yu ◽  
Guo Jie Huang ◽  
...  

The Cr precipitation sequence in Cu-Cr-Zr-Ag alloy during the aging process at 450°C could be obtained by Transmission electron microscopy (TEM) and High-resolution transmission microscopy (HRTEM) in the study. The strengthening curve shows a unimodal type and the tensile strength trends to peak when the aged for 4h. The Cr phase transformation of Cu-Cr-Zr-Ag aged at 450°C is supersaturated solid sloution→G.P zones→fcc Cr phase→order fcc Cr phase→bcc Cr phase. The orientation relationship between bcc Cr precipitates and the matrix change from cube-on-cube to NW-OR.


2016 ◽  
Vol 877 ◽  
pp. 188-193 ◽  
Author(s):  
Li Wei Quan ◽  
Wen Ning Mu ◽  
Lei Kang ◽  
Xiao Ma ◽  
Peng Han ◽  
...  

A precipitation hardenable Al-Cu-Mg alloy was cryorolled with liquid nitrogen followed solution treatment and then aged at 170 ̊C for different time. The microstructure was characterized by optical microscopy (OM) and transmission electron microscopy (TEM). Hardness and tensile strength were also tested. The dislocation loops in the cryorolled alloy are more than the room temperature rolled alloy. Meanwhile the hardness, yield strength and tensile strength are larger than the room temperature rolled alloy.


Sign in / Sign up

Export Citation Format

Share Document