IVEM and SEM images of whole cells cultured on EHS matrix (Matrigel)

Author(s):  
Nancy R. Smith ◽  
Stephen Benson ◽  
Carolyn Larabell

To investigate the interactions of cells with the extracellular matrix (ECM), rat lung fibroblasts (RLF) were cultured on an ECM extracted from EHS sarcoma to serve as an in vitro morphogenic model system. Surface features of RLF/EHS matrix interactions were viewed using the scanning electron microscope (SEM) and the intermediate voltage electron microscope (IVEM).For SEM, RLF were plated on EHS coated 13 mm glass coverslips at a density of 1 X 104/cm2. Coverslips were coated by spreading 25 μl of chilled EHS matrix (15 mg/ml) on the coverslip and incubating at 37° for 60 min. For IVEM, formvar coated gold grids were submerged in EHS matrix prior to polymerization. Controls consisted of cells grown on glass or gold grids minus ECM.

2020 ◽  
Vol 1010 ◽  
pp. 613-619
Author(s):  
Thet Swe Thet ◽  
Hasmaliza M. Mohamad ◽  
Khairul Anuar Shariff

Strontium (Sr) stimulates osteoblast and inhibits osteoclast activities in-vitro and is used clinically as a treatment for osteoporosis. In this research, the effect of Sr substitution on the apatite formation of sol-gel derived bioactive glass (BG) (55.90SiO2-1.72P2O5 -21.67Na2O - (20.69-x) CaO -x SrO) (x=0, 5 and 8 mol. %) were investigated. The synthesized Sr doped BG samples were treated in Hank's Balanced Salt Solution (HBSS) for 14 days to study the bioactivity. The achieved samples were evaluated by X-ray powder diffraction (XRD) and Scanning electron microscope (SEM). In XRD, the hydroxyapatite (HA) crystalline peak for 8% Sr-BG is less compared with others. When Sr amount is increased to 8%, the low crystalline peaks of HA were detected although the same soaking duration. FTIR spectra supported the delay precipitation of calcium phosphate (CaP), especially for the specimen containing 8% Sr. After 14 days soaking, SEM images confirmed the bioactivity of the synthesized samples by the formation of apatite on the glass surface.


Author(s):  
Gao Fengming

Transmission electron microscope(TEM) and scanning electron microscope(SEM) were widely used in experimental tumor studies. They are useful for evaluation of cellular transformation in vitro, classification of histological types of tumors and treating effect of tumors. We have obtained some results as follows:1. Studies on the malignant transformation of mammalian cells in vitro. Syrian golden hamster embryo cells(SGHEC) were transformed in vitro by ThO2 and/or ore dust. In a few days after dust added into medium, some dust crystals were phagocytized. Two weeks later, malignant transformation took place. These cells were of different size, nuclear pleomorphism, numerous ribosomes, increasing of microvilli on cell surface with various length and thickness, and blebs and ruffles(Figs. 1,2). Myelomonocytic leukemic transformation of mouse embryo cells(MEC) was induced in vitro by 3H-TdR. Transformed cells were become round from fusiform. The number of mitochondria and endoplasmic reticulum was reduced, ribosomes and nucleoli increased, shape of nuclei irregular, microvilli increased, and blebs and ruffles appeared(Fig. 3).


2014 ◽  
Vol 887-888 ◽  
pp. 458-461
Author(s):  
Chang Qing Li ◽  
Kun Wang ◽  
Pei Jia Liu ◽  
Qi Ming

Porous silicon (PSi) was fabricated by using electrochemical anodic etching method. Then acid treatment and cathode reduction treatment were employed to improve the luminescence properties and stability of PSi material. Photoluminescence (PL) measurements and scanning electron microscope (SEM) were used to observe the luminescence properties and microstructure of samples, respectively. The results of PL measurements showed that the PL intensity and the stability of luminescence of samples after cathodic reduction and acid treatment were significantly improved. The SEM images showed that the porosity of PSi may be increased through the cathodic reduction treated.


2017 ◽  
Vol 9 (2) ◽  
pp. 4-10
Author(s):  
Krishna Prasada L ◽  
Jyothsna S Jathanna ◽  
Naveen Kumar ◽  
Ramya M.K ◽  
Elizabeth Issac

BACKGROUND: To determine the effectiveness of three polishing systems on three different composite materials by evaluating surface roughness using a Profilometer and Scanning electron microscope. METHODOLOGY: A total of Sixty-three resin composite disks were prepared in rectangular acrylic mould of 8×2mm dimension, with 4mm thickness. Specimens were made of light activated resin composite Filtek Z-250-XT, Tetric-N-Ceram bulkfill, Ceram X Duo. The sixty-three samples were divided into three groups of twenty-one samples each i.e. Group A (Filtek Z-250-XT), Group B (TetricN-Ceram bulkfill) and Group C (Ceram-X-Duo).Out of 21 samples of each of the material, 7 specimens were polished with multi enhance polishing agents, 7 specimens were polished with super snap polishing agents and 7 specimens were polished with sof-lexdiscs.Surface roughness of each sample after polishingwasevaluatedusingProfilometer and Scanning electron microscope. RESULTS: One-way anova and kruskalwallis test was used for statistical analysis. Ceram-X-Duo gave least roughness average value with Super snap polishing system when compared to multi enhance and sof-lex polishing system. CONCLUSION: Super snap polishing system is a better polishing system than multi enhance and soflex and Ceram-X-Duo composite material offers better polishability compared to Filtek Z-250-XT and Tetric-N-Ceram bulk fill.


2000 ◽  
Vol 6 (S2) ◽  
pp. 750-751
Author(s):  
David C Joy ◽  
David Braski

It has been estimated that more than 90% of all scanning electron microscope (SEM) images ever published have been obtained using secondary electrons (SE) which are defined as being those electrons emitted with energies between 0 and 50eV. The properties of these secondary electron are therefore of considerable interest and importance. However, although secondary electrons have been intensively studied since their discovery by Starke in 1901 the majority of the work has been aimed at determining the SE yield coefficient and its variation with energy for elements and compounds. The energy spectrum of secondary electrons has received far less attention although it is evident that the form of the spectrum must have an effect on the image contrast observed in the SEM because SE detectors are energy selective devices. The few studies that have been made have mostly concentrated on spectra obtained from clean samples observed under ultra-high vacuum conditions. This is understandable, because it is certain that the presence of a surface layer of contamination will change the SE spectrum to some degree or other, but it is unfortunate because all specimens in real SEMs are dirty and it is information about this situation that is required.


Sign in / Sign up

Export Citation Format

Share Document