Development of High Resolution Electron Microscope, JEM-100B

Author(s):  
M. Watanabe ◽  
T. Yanaka ◽  
M. Yamamoto ◽  
S. Suzuki ◽  
Y. Nagahama ◽  
...  

The JEM-100B electron microscope has been developed with a view to the possibility of obtaining an ultimate resolving power at a beam accelerating voltage of 100kev. Prom the very nature of the instrument, the stability is fully ensured from a mechanical and electrical point of view. In the electron optical system, since highly excited lenses are utilized, image formation under the lowest aberration condition are ensured. The image forming system is of the 4-stage type which greatly expands the range of application not only in microscopic studies but also in the study of electron diffraction. Furthermore, with a view to simplifying instrument operation, various problems have been solved this enabling the instrument to be fully automated. The JEM-100B exhibits the following features.Objective Lens: At the present stage of development, fo=1.6mm. However, so as to be able to incorporate a lens (T. Yanaka et al, 1967) possessing an extremely small spherical aberration coefficient in the future, lens excitation has been made sufficiently high (8kA) and the movable aperture control knob and the specimen device have been designed accordingly.

Author(s):  
Mihir Parikh

It is well known that the resolution of bio-molecules in a high resolution electron microscope depends not just on the physical resolving power of the instrument, but also on the stability of these molecules under the electron beam. Experimentally, the damage to the bio-molecules is commo ly monitored by the decrease in the intensity of the diffraction pattern, or more quantitatively by the decrease in the peaks of an energy loss spectrum. In the latter case the exposure, EC, to decrease the peak intensity from IO to I’O can be related to the molecular dissociation cross-section, σD, by EC = ℓn(IO /I’O) /ℓD. Qu ntitative data on damage cross-sections are just being reported, However, the microscopist needs to know the explicit dependence of damage on: (1) the molecular properties, (2) the density and characteristics of the molecular film and that of the support film, if any, (3) the temperature of the molecular film and (4) certain characteristics of the electron microscope used


The resolving power of the electron microscope as assessed by purely electron optical factors is of the order of 1 Å. The resolution obtainable in practice is limited by adventitious instabilities, mechanical and electrical in nature. The detailed design of a high resolution microscope follows from an analysis of these disturbances; its construction must be carried out with the highest precision. Special attention is paid to the electron gun, to the specimen stage and to the mounting of the microscope. For the Cambridge project, 600 kV has been adopted on the grounds of cost- effectiveness. It employs a lanthanum boride cathode and high stability electronics. A pneumatic suspension system supports the microscope when in operation, to isolate it from ambient vibrations. From the electron optical parameters of the condenser-objective lens, together with the recorded levels of residual disturbances, an image reso¬lution of 2.0 Å is predicted (at 600 kV), which should be improved to 1.5 Å by image processing. Initial results from thin specimens of minerals, metal particles and metallic glasses demonstrate that this performance is already closely approached.


Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
M. G. R. Thomson

The variation of contrast and signal to noise ratio with change in detector solid angle in the high resolution scanning transmission electron microscope was discussed in an earlier paper. In that paper the conclusions were that the most favourable conditions for the imaging of isolated single heavy atoms were, using the notation in figure 1, either bright field phase contrast with β0⋍0.5 α0, or dark field with an annular detector subtending an angle between ao and effectively π/2.The microscope is represented simply by the model illustrated in figure 1, and the objective lens is characterised by its coefficient of spherical aberration Cs. All the results for the Scanning Transmission Electron Microscope (STEM) may with care be applied to the Conventional Electron Microscope (CEM). The object atom is represented as detailed in reference 2, except that ϕ(θ) is taken to be the constant ϕ(0) to simplify the integration. This is reasonable for θ ≤ 0.1 θ0, where 60 is the screening angle.


Author(s):  
T. A. Welton

An ultimate design goal for an improved electron microscope, aimed at biological applications, is the determination of the structure of complex bio-molecules. As a prototype of this class of problems, we propose to examine the possibility of reading DNA sequence by an imaginable instrument design. This problem ideally combines absolute importance and relative simplicity, in as much as the problem of enzyme structure seems to be a much more difficult one.The proposed technique involves the deposition on a thin graphite lamina of intact double helical DNA rods. If the structure can be maintained under vacuum conditions, we can then make use of the high degree of order to greatly reduce the work involved in discriminating between the four possible purine-pyrimidine arrangements in each base plane. The phosphorus atoms of the back bone form in projection (the helical axis being necessarily parallel to the substrate surface) two intertwined sinusoids. If these phosphorus atoms have been located up to a certain point on the molecule, we have available excellent information on the orientation of the base plane at that point, and can then locate in projection the key atoms for discrimination of the four alternatives.


Author(s):  
David J. Smith

The electron microscope has evolved to the level where it is now straightforward to record highresolution images from thin samples (t∼10 to 20nm) that are directly interpretable in terms of atomic arrangements. Whilst recorded images necessarily represent two-dimensional projections of the structure, many defects such as dislocations and interfaces may be linear or planar in nature and thus might be expected to be amenable to detailed characterization. In this review, we briefly consider the recent significant progress that has been made in quantitative defect analysis using the high-resolution electron microscope and then discuss some drawbacks to the technique as well as potential scope for further improvements. Surveys of defect modelling for some small-unit-cell materials and interfaces have recently been published, and reference should be made to other papers in this symposium for further examples.The technique of structure imaging originated in the early '70s with observations of large-unit-cell block oxides.


Author(s):  
Kiyomichi Nakai ◽  
Yusuke Isobe ◽  
Chiken Kinoshita ◽  
Kazutoshi Shinohara

Induced spinodal decomposition under electron irradiation in a Ni-Au alloy has been investigated with respect to its basic mechanism and confirmed to be caused by the relaxation of coherent strain associated with modulated structure. Modulation of white-dots on structure images of modulated structure due to high-resolution electron microscopy is reduced with irradiation. In this paper the atom arrangement of the modulated structure is confirmed with computer simulation on the structure images, and the relaxation of the coherent strain is concluded to be due to the reduction of phase-modulation.Structure images of three-dimensional modulated structure along <100> were taken with the JEM-4000EX high-resolution electron microscope at the HVEM Laboratory, Kyushu University. The transmitted beam and four 200 reflections with their satellites from the modulated structure in an fee Ni-30.0at%Au alloy under illumination of 400keV electrons were used for the structure images under a condition of the spherical aberration constant of the objective lens, Cs = 1mm, the divergence of the beam, α = 3 × 10-4 rad, underfocus, Δf ≃ -50nm and specimen thickness, t ≃ 15nm. The CIHRTEM code was used for the simulation of the structure image.


Author(s):  
G.Y. Fan ◽  
O.L. Krivanek

Full alignment of a high resolution electron microscope (HREM) requires five parameters to be optimized: the illumination angle (beam tilt) x and y, defocus, and astigmatism magnitude and orientation. Because neither voltage nor current centering lead to the correct illumination angle, all the adjustments must be done on the basis of observing contrast changes in a recorded image. The full alignment can be carried out by a computer which is connected to a suitable image pick-up device and is able to control the microscope, sometimes with greater precision and speed than even a skilled operator can achieve. Two approaches to computer-controlled (automatic) alignment have been investigated. The first is based on measuring the dependence of the overall contrast in the image of a thin amorphous specimen on the relevant parameters, the other on measuring the image shift. Here we report on our progress in developing a new method, which makes use of the full information contained in a computed diffractogram.


Sign in / Sign up

Export Citation Format

Share Document