Progress in ultrastructural and molecular analysis of the nuclear matrix

Author(s):  
Edward G. Fey

In the past few years, considerable advances have been made regarding the structure and function of the nuclear matrix. In the first half of this presentation, the field of nuclear matrix research will be summarized. Emphasis will be placed on those studies where molecular interactions are demonstrated in situ utilizing high resolution light and/or electron microscopy. Studies demonstrating the role of the nuclear matrix in DNA synthesis and replication, RNA transcription and processing, and the binding of matrix attachment regions to specific nuclear matrix proteins will be summarized.

Author(s):  
Scott M. Woodley ◽  
Graeme M. Day ◽  
R. Catlow

We review the current techniques used in the prediction of crystal structures and their surfaces and of the structures of nanoparticles. The main classes of search algorithm and energy function are summarized, and we discuss the growing role of methods based on machine learning. We illustrate the current status of the field with examples taken from metallic, inorganic and organic systems. This article is part of a discussion meeting issue ‘Dynamic in situ microscopy relating structure and function’.


1982 ◽  
Vol 57 (3) ◽  
pp. 301-308 ◽  
Author(s):  
W. Kemp Clark

✓ The President of the American Association of Neurological Surgeons concentrates on the problems facing the specialty, the achievements of the past, and the mechanisms designed to foster the advancement and role of neurosurgery. To counter the difficult days ahead, he emphasizes the need for concerted effort and action on the part of neurosurgeons within the umbrella of the Association as spokesman for the specialty and advocate for the patients' welfare.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3489
Author(s):  
Youri I. Pavlov ◽  
Anna S. Zhuk ◽  
Elena I. Stepchenkova

Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization. The principal idea of participation of different polymerases in specific transactions at the fork proposed by Morrison and coauthors 30 years ago and later named “division of labor,” remains standing, with an amendment of the broader role of polymerase δ in the replication of both the lagging and leading DNA strands. However, cancer-associated mutations predominantly affect the catalytic subunit of polymerase ε that participates in leading strand DNA synthesis. We analyze how new findings in the DNA replication field help elucidate the polymerase variants’ effects on cancer.


Author(s):  
Robert B. Kelly

Antimicrotubular agents such as vinblastine and colchicine have been used to assess the role of cytoplasmic microtubules in secretory processes (for review, see 1). The purpose of this study was to determine the effects of vinblastine on the structure and function of resting and pilocarpine- stimulated acinar cells of the rat exorbital lacrimal gland.Rats were divided into four groups: (a) untreated control; (b) vinblastine (4 mg/kg) treatment for 1 to 24 hours; (c) pilocarpine (20 mg/kg) treatment for 1 hour; and (d) vinblastine treatment for 1 hour, followed by pilocarpine treatment for 1 hour. Both drugs were administered via single intraperitoneal injections. The glands were fixed by perfusion and processed for electron microscopy.


2001 ◽  
Vol 114 (15) ◽  
pp. 2723-2733 ◽  
Author(s):  
Paul G. McKean ◽  
Sue Vaughan ◽  
Keith Gull

Although most eukaryotic cells can express multiple isotypes of αβ-tubulin, the significance of this diversity has not always been apparent. Recent data indicate that particular αβ-tubulin isotypes, both genome encoded and those derived by post-translational modification, can directly influence microtubule structure and function — thus validating ideas originally proposed in the multitubulin hypothesis over 25 years ago.It has also become increasingly evident over the past year that some (but intriguingly not all) eukaryotes encode several other tubulin proteins, and to date five further members of the tubulin superfamily, γ, δ, ϵ, 𝛇 and η, have been identified. Although the role of γ-tubulin in the nucleation of microtubule assembly is now well established, far less is known about the functions of δ-, ϵ-, 𝛇- and η-tubulin. Recent work has expanded our knowledge of the functions and localisation of these newer members of the tubulin superfamily, and the emerging data suggesting a restricted evolutionary distribution of these `new' tubulin proteins, conforms to established knowledge of microtubule cell biology. On the basis of current evidence, we predict that δ-, ϵ-, 𝛇- and η-tubulin all have functions associated with the centriole or basal body of eukaryotic cells and organisms.


Author(s):  
Benjamin F. Trump ◽  
Irene K. Berezesky ◽  
Raymond T. Jones

The role of electron microscopy and associated techniques is assured in diagnostic pathology. At the present time, most of the progress has been made on tissues examined by transmission electron microscopy (TEM) and correlated with light microscopy (LM) and by cytochemistry using both plastic and paraffin-embedded materials. As mentioned elsewhere in this symposium, this has revolutionized many fields of pathology including diagnostic, anatomic and clinical pathology. It began with the kidney; however, it has now been extended to most other organ systems and to tumor diagnosis in general. The results of the past few years tend to indicate the future directions and needs of this expanding field. Now, in addition to routine EM, pathologists have access to the many newly developed methods and instruments mentioned below which should aid considerably not only in diagnostic pathology but in investigative pathology as well.


Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


Sign in / Sign up

Export Citation Format

Share Document