A study of the microvasculature of the normal rabbit bladder with vascular corrosion casting, SEM and TEM

Author(s):  
Fred E. Hossler ◽  
Frederick C. Monson

The mammalian urinary bladder performs two functions, urine storage and expulsion. Bladder function is dependent upon the delivery of oxygen and nutrients via a rich blood supply, yet studies of the bladder vasculature during distension have concluded that blood flow is restricted during filling. Following surgically induced ischemia, regeneration of the wall and its vasculature have been reported but not described in detail. Beyond the gross level, the functional vascular anatomy of the bladder wall is poorly understood. Preliminary to studies of angiogenesis and mucosal regeneration following ischemia, and vascular accommodation during distension, the present study utilizes routine transmission (TEM) and scanning (SEM) electron microscopy, and vascular corrosion casting (VCC) to describe the normal microvasculature of the rabbit bladder.Bladders were perfuse fixed with 2% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.3, for routine TEM and SEM. Thin sections were cut from Araldyte and stained with lead and uranium for TEM, and samples were critical point dried from ethanol and CO2 for SEM.

Author(s):  
F.E. Hossler ◽  
M.I. McKamey ◽  
F.C. Monson

A comprehensive study of the microvasculature of the normal rabbit bladder, revealed unusual "capillary glomeruli" along the lateral walls. Here they are characterized as hemal lymph nodes using light microscopy, SEM, TEM, ink injection, and vascular casting.Bladders were perfused via a cannula placed in the abdominal aorta with either 2% glutaraldehyde in 0.1M cacodylate buffer (pH 7.4) for fixation, 10% India ink in 0.9% saline and 0.1M phosphate (pH 7.4) for vessel tracing, or resin (Mercoximethylmethacrylate: catalyst, 4:1:0.3; Ladd Research Industries) for vascular corrosion casting. Infusion pressure was 100mm Hg. Fixed tissue was sectioned from epon-araldyte resin, and stained with toluidine blue for light microscopy, and lead and uranium for TEM. Ink injected tissue was photographed directly from saline-filled bladders illuminated from below. Resin-filled tissue was macerated in 5% KOH and distilled water. Casts were critical point dried, sputter coated with goldpalladium, and examined by routine SEM at 10 KV.


2007 ◽  
Vol 13 (3) ◽  
pp. 220-227 ◽  
Author(s):  
Fred E. Hossler ◽  
Race L. Kao

The urinary bladder is an unusual organ in that its normal function includes filling and emptying with alternating changes in internal pressure. Although fluctuations in blood flow to the bladder wall are known to accompany these changes, detailed descriptions of the bladder microvasculature are sparse. The present study uses vascular corrosion casting and scanning electron microscopy to describe the three-dimensional anatomy of the microvasculature of the urinary bladder of the dog. Specialized features of that microvasculature, including collateral circulation, vessel folding, vessel orientation, the presence of valves and sphincters, and mucosal capillary density, that may enhance and control blood flow during normal bladder function, are described and discussed.


Author(s):  
A. Singh ◽  
A. Dykeman ◽  
J. Jarrelf ◽  
D. C. Villeneuve

Hexachlorobenzene (HCB), a persistent and mobile organochlorine pesticide, occurs in environment. HCB has been shown to be present in human follicular fluid. An objective of the present report, which is part of a comprehensive study on reproductive toxicity of HCB, was to determine the cytologic effects of the compound on ovarian follicles in a primate model.Materials and Methods. Eight Cynomolgus monkeys were housed under controlled conditions at Animal facility of Health and Welfare, Ottawa. Animals were orally administered gelatin capsules containing HCB mixed with glucose in daily dosages of 0.0 or 10 mg/kg b.w. for 90 days; the former was the control group. On the menstrual period following completion of dosing, the monkeys underwent an induction cycle of superovulation. At necropsy, one-half of an ovary from each animal was diced into ca. 2- to 3-mm cubed specimens that were fixed by immersion in 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.3). Subsequent procedures followed to obtain thin sections that were examined in a Hitachi H-7000 electron microscope have been described earlier.


Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Author(s):  
Patricia L. Jansma

The presence of the membrane bound vesicles or blebs on the intestinal epithelial cells has been demonstrated in a variety of vertebrates such as chicks, piglets, hamsters, and humans. The only invertebrates shown to have these microvillar blebs are two species of f1ies. While investigating the digestive processes of the freshwater microcrustacean, Daphnia magna, the presence of these microvillar blebs was noticed.Daphnia magna fed in a suspension of axenically grown green alga, Chlamydomonas reinhardii for one hour were narcotized with CO2 saturated water. The intestinal tracts were excised in 2% glutaraldehyde in 0.2 M cacodyl ate buffer and then placed in fresh 2% glutaraldehyde for one hour. After rinsing in 0.1 M cacodylate buffer, the sample was postfixed in 2% OsO4, dehydrated with a graded ethanol series, infiltrated and embedded with Epon-Araldite. Thin sections were stained with uranyl acetate and Reynolds lead citrate before viewing with the Philips EM 200.


Author(s):  
M. Ashraf ◽  
F. Thompson ◽  
S. Miki ◽  
P. Srivastava

Iron is believed to play an important role in the pathogenesis of ischemic injury. However, the sources of intracellular iron in myocytes are not yet defined. In this study we have attempted to localize iron at various cellular sites of the cardiac tissue with the ferrocyanide technique.Rat hearts were excised under ether anesthesia. They were fixed with coronary perfusion with 3% buffered glutaraldehyde made in 0.1 M cacodylate buffer pH 7.3. Sections, 60 μm in thickness, were cut on a vibratome and were incubated in the medium containing 500 mg of potassium ferrocyanide in 49.5 ml H2O and 0.5 ml concentrated HC1 for 30 minutes at room temperature. Following rinses in the buffer, tissues were dehydrated in ethanol and embedded in Spurr medium.The examination of thin sections revealed intense staining or reaction product in peroxisomes (Fig. 1).


2020 ◽  
Vol 29 ◽  
pp. 096368972090246 ◽  
Author(s):  
Guan Qun Zhu ◽  
Seung Hwan Jeon ◽  
Kyu Won Lee ◽  
Hyuk Jin Cho ◽  
U-Syn Ha ◽  
...  

There is still a lack of sufficient research on the mechanism behind neurogenic bladder (NB) treatment. The aim of this study was to explore the effect of overexpressed stromal cell-derived factor-1 (SDF-1) secreted by engineered immortalized mesenchymal stem cells (imMSCs) on the NB. In this study, primary bone marrow mesenchymal stem cells (BM-MSCs) were transfected into immortalized upregulated SDF-1-engineered BM-MSCs (imMSCs/eSDF-1+) or immortalized normal SDF-1-engineered BM-MSCs (imMSCs/eSDF-1−). NB rats induced by bilateral pelvic nerve (PN) transection were treated with imMSCs/eSDF-1+, imMSCs/eSDF-1−, or sham. After a 4-week treatment, the bladder function was assessed by cystometry and voiding pattern analysis. The PN and bladder tissues were evaluated via immunostaining and western blotting analysis. We found that imMSCs/eSDF-1+ expressed higher levels of SDF-1 in vitro and in vivo. The treatment of imMSCs/eSDF-1+ improved NB and evidently stimulated the recovery of bladder wall in NB rats. The recovery of injured nerve was more effective in the NB+imMSCs/eSDF-1+ group than in other groups. High SDF-1 expression improved the levels of vascular endothelial growth factor and basic fibroblast growth factor. Apoptosis was decreased after imMSCs injection, and was detected rarely in the NB+imMSCs/eSDF-1+ group. Injection of imMSCs boosted the expression of neuronal nitric oxide synthase, p-AKT, and p-ERK in the NB+imMSCs/eSDF-1+ group than in other groups. Our findings demonstrated that overexpression of SDF-1 induced additional MSC homing to the injured tissue, which improved the NB by accelerating the restoration of injured nerve in a rat model.


Author(s):  
J. Eric Ahlskog

Urinary problems occur with normal aging. In women they often relate to the changes in female anatomy due to the delivering of babies. With superimposed age-related changes in soft tissues, laxity may result in incontinence (loss of urinary control), especially with coughing, laughing, or straining. In men the opposite symptom tends to occur: urinary hesitancy (inability to evacuate the bladder). This is due to constriction of the bladder outlet by an enlarging prostate; the prostate normally surrounds the urethra, through which urine passes. DLB and PDD are often associated with additional bladder problems. Recall that the autonomic nervous system regulates bladder function and that this system tends to malfunction in Lewy disorders. Hence, reduced bladder control is frequent among those with DLB, PDD, and Parkinson’s disease. This condition is termed neurogenic bladder, which implies that the autonomic nervous system control of bladder reflexes is not working properly. This may manifest as urgency with incontinence or hesitancy. Neurogenic bladder problems require different strategies than those used for treating the simple age-related problems that develop in mid-life and beyond. Moreover, there are certain caveats to treatment once a neurogenic bladder is recognized. The bladder is simply a reservoir that holds urine. It is located in the lower pelvis and is distant from the kidneys. The kidneys essentially filter the circulating blood and make the urine. The urine flows down from the kidneys into the bladder, as shown in Figure 14.1. Normally, as the bladder slowly fills with urine, a reflex is triggered when it is nearly full. This results in conscious awareness of the need to urinate, plus it primes the reflexive tendency of the bladder to contract in order to expel the urinary contents. The bladder is able to contract because of muscles in the bladder walls. Normally, nerves activate these muscles at the appropriate time, which forcefully squeeze the bladder, expelling the urine. Nerve sensors in the bladder wall are activated by bladder filling and transmit this information to the central nervous system, ramping up bladder wall muscle activity.


Sign in / Sign up

Export Citation Format

Share Document