scholarly journals Effects of hypoxic treatment on the kinetics of neurotransmitters in the brain of rats— In vitro and in vivo studies.

1991 ◽  
Vol 55 ◽  
pp. 275
Author(s):  
Eric Chleide ◽  
Shinji Shibanoki ◽  
Taizo Kubo ◽  
Miki Kogure ◽  
Koichi Ishikawa
Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 161
Author(s):  
Séverine André ◽  
Lionel Larbanoix ◽  
Sébastien Verteneuil ◽  
Dimitri Stanicki ◽  
Denis Nonclercq ◽  
...  

Blood-brain barrier (BBB) crossing and brain penetration are really challenging for the delivery of therapeutic agents and imaging probes. The development of new crossing strategies is needed, and a wide range of approaches (invasive or not) have been proposed so far. The receptor-mediated transcytosis is an attractive mechanism, allowing the non-invasive penetration of the BBB. Among available targets, the low-density lipoprotein (LDL) receptor (LDLR) shows favorable characteristics mainly because of the lysosome-bypassed pathway of LDL delivery to the brain, allowing an intact discharge of the carried ligand to the brain targets. The phage display technology was employed to identify a dodecapeptide targeted to the extracellular domain of LDLR (ED-LDLR). This peptide was able to bind the ED-LDLR in the presence of natural ligands and dissociated at acidic pH and in the absence of calcium, in a similar manner as the LDL. In vitro, our peptide was endocytosed by endothelial cells through the caveolae-dependent pathway, proper to the LDLR route in BBB, suggesting the prevention of its lysosomal degradation. The in vivo studies performed by magnetic resonance imaging and fluorescent lifetime imaging suggested the brain penetration of this ED-LDLR-targeted peptide.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1291 ◽  
Author(s):  
Rita Crinelli ◽  
Carolina Zara ◽  
Michaël Smietana ◽  
Michele Retini ◽  
Mauro Magnani ◽  
...  

Glutathione (GSH) has poor pharmacokinetic properties; thus, several derivatives and biosynthetic precursors have been proposed as GSH-boosting drugs. I-152 is a conjugate of N-acetyl-cysteine (NAC) and S-acetyl-β-mercaptoethylamine (SMEA) designed to release the parent drugs (i.e., NAC and β-mercaptoethylamine or cysteamine, MEA). NAC is a precursor of L-cysteine, while MEA is an aminothiol able to increase GSH content; thus, I-152 represents the very first attempt to combine two pro-GSH molecules. In this review, the in-vitro and in-vivo metabolism, pro-GSH activity and antiviral and immunomodulatory properties of I-152 are discussed. Under physiological GSH conditions, low I-152 doses increase cellular GSH content; by contrast, high doses cause GSH depletion but yield a high content of NAC, MEA and I-152, which can be used to resynthesize GSH. Preliminary in-vivo studies suggest that the molecule reaches mouse organs, including the brain, where its metabolites, NAC and MEA, are detected. In cell cultures, I-152 replenishes experimentally depleted GSH levels. Moreover, administration of I-152 to C57BL/6 mice infected with the retroviral complex LP-BM5 is effective in contrasting virus-induced GSH depletion, exerting at the same time antiviral and immunomodulatory functions. I-152 acts as a pro-GSH agent; however, GSH derivatives and NAC cannot completely replicate its effects. The co-delivery of different thiol species may lead to unpredictable outcomes, which warrant further investigation.


1981 ◽  
Vol 34 (6) ◽  
pp. 745-748 ◽  
Author(s):  
A. C. Leitão ◽  
H. C. Mottat ◽  
R. Alcantara Gomes
Keyword(s):  

2016 ◽  
Vol 113 (50) ◽  
pp. E8169-E8177 ◽  
Author(s):  
Sung Il Park ◽  
Gunchul Shin ◽  
Jordan G. McCall ◽  
Ream Al-Hasani ◽  
Aaron Norris ◽  
...  

Optogenetic methods to modulate cells and signaling pathways via targeted expression and activation of light-sensitive proteins have greatly accelerated the process of mapping complex neural circuits and defining their roles in physiological and pathological contexts. Recently demonstrated technologies based on injectable, microscale inorganic light-emitting diodes (μ-ILEDs) with wireless control and power delivery strategies offer important functionality in such experiments, by eliminating the external tethers associated with traditional fiber optic approaches. Existing wireless μ-ILED embodiments allow, however, illumination only at a single targeted region of the brain with a single optical wavelength and over spatial ranges of operation that are constrained by the radio frequency power transmission hardware. Here we report stretchable, multiresonance antennas and battery-free schemes for multichannel wireless operation of independently addressable, multicolor μ-ILEDs with fully implantable, miniaturized platforms. This advance, as demonstrated through in vitro and in vivo studies using thin, mechanically soft systems that separately control as many as three different μ-ILEDs, relies on specially designed stretchable antennas in which parallel capacitive coupling circuits yield several independent, well-separated operating frequencies, as verified through experimental and modeling results. When used in combination with active motion-tracking antenna arrays, these devices enable multichannel optogenetic research on complex behavioral responses in groups of animals over large areas at low levels of radio frequency power (<1 W). Studies of the regions of the brain that are involved in sleep arousal (locus coeruleus) and preference/aversion (nucleus accumbens) demonstrate the unique capabilities of these technologies.


2009 ◽  
Vol 30 (3) ◽  
pp. 480-492 ◽  
Author(s):  
Jun Li ◽  
Louise D McCullough

AMP-activated protein kinase (AMPK) is a serine threonine kinase that is highly conserved through evolution. AMPK is found in most mammalian tissues including the brain. As a key metabolic and stress sensor/effector, AMPK is activated under conditions of nutrient deprivation, vigorous exercise, or heat shock. However, it is becoming increasingly recognized that changes in AMPK activation not only signal unmet metabolic needs, but also are involved in sensing and responding to ‘cell stress’, including ischemia. The downstream effect of AMPK activation is dependent on many factors, including the severity of the stressor as well as the tissue examined. This review discusses recent in vitro and in vivo studies performed in the brain/neuronal cells and vasculature that have contributed to our understanding of AMPK in stroke. Recent data on the potential role of AMPK in angiogenesis and neurogenesis and the interaction of AMPK with 3-hydroxy-3-methy-glutaryl-CoA reductase inhibitors (statins) agents are highlighted. The interaction between AMPK and nitric oxide signaling is also discussed.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1451-1451 ◽  
Author(s):  
Shoshi Tessler ◽  
Inbal Mishalian ◽  
Ronny Peri-Naor ◽  
Stela Gengrinovitch ◽  
Raphael Mayer ◽  
...  

Abstract Introduction: Acute myeloid leukemia (AML) is associated with poor outcomes in older and medically unfit patients, largely due to the severe toxicity associated with cytarabine treatment, which precludes the administration of effective cytarabine doses. BST-236 is a prodrug of cytarabine, inactive in its prodrug form and designed to deliver cytarabine to leukemia cells with reduced systemic toxicity, thus to enable delivery of high cytarabine doses to leukemia cells with relative sparing of normal tissues. Results: BST-236 is a conjugate of cytarabine and asparagine (Figure 1). It was demonstrated that BST-236 is inactive as an intact prodrug and that its activity is exerted by release of cytarabine via non-enzymatic hydrolysis. Unlike free cytarabine, the bound cytarabine in BST-236 is not phosphorylated into its active metabolite Ara-CTP and it is protected by the asparagine residue from deamination into its inactive form Ara-U. In vitro studies demonstrate that BST-236 enters into leukemia cells, accompanied by cellular accumulation of free cytarabine, which is released from BST-236 (Figure 2). Like cytarabine, treatment with BST-236 result in induction of cell death of various leukemia cell lines via apoptosis, an activity which is dependent on the human equilibrative nucleoside transporter 1 (hENT1). The in vitro kinetics of BST-236-induced toxicity were found to be delayed compared to administration of free cytarabine, correlating with an observed delayed cellular availability of cytarabine. In vivo studies in mice and dogs demonstrate that BST-236 concentrations in the plasma are dose-proportional, with a prodrug-typical profile and only ~5% of free cytarabine present in the plasma. The maximal tolerated dose of BST-236 was found to be several-fold higher than reported for cytarabine, with mainly hematological effects and no unexpected toxicities. In vivo head-to-head studies in human leukemia mouse models with equimolar doses of cytarabine and BST-236 demonstrate similar efficacy of complete elimination of the leukemia cells in the bone marrow, spleen, and peripheral blood by both molecules (Figure 3A). However, while cytarabine treatment was associated with significant toxicity including weight loss, dramatic reduction in spleen size and number of mouse spleen cells, and delayed normal murine white blood cell recovery, equimolar BST-236 doses enabled spleen and BM recovery with minimal weight loss and no observed clinical signs (Figure 3B, 3C). Summary: in vitro and in vivo studies demonstrate that BST-236 is a prodrug of cytarabine, which enables the delivery of cytarabine to target cells, resulting in elimination of the leukemia with reduced systemic toxicity compared to free cytarabine. The data also suggest that while the mechanism of cell death induced by BST-236 and cytarabine is similar, the observed differential kinetics of the delivery of cytarabine by BST-236 and its metabolism may explain its reduced systemic toxicity. Our nonclinical findings are in line with the clinical results of the BST-236 Phase 1/2 study (ASH 2017 abstract no 893, manuscript in preparation) and suggest that BST-236 may enable delivery of high cytarabine doses to older and medically-unfit patients who currently cannot benefit from an effective cytarabine therapy. This suggestion is to be confirmed by an ongoing Phase 2b study. Disclosures Tessler: Biosight: Employment. Gengrinovitch:Biosight: Employment. Ben Yakar:Biosight: Employment. Peled:Cellect Biotherapeutics Ltd: Consultancy. Flaishon:Biosight: Employment.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i13-i14
Author(s):  
Alison Mercer-Smith ◽  
Wulin Jiang ◽  
Juli Bago ◽  
Simon Khagi ◽  
Carey Anders ◽  
...  

Abstract INTRODUCTION: Non-small cell lung cancer (NSCLC) and breast cancer are the most common cancers that metastasize to the brain. New therapies are needed to seek out and eradicate metastases. Genetically engineered neural stem cells (NSCs) have shown unique tumor-homing capacity, allowing them to deliver cytotoxic proteins directly to tumors. An ideal NSC drug carrier would be readily available and autologous. We have transdifferentiated human fibroblasts into induced NSCs (hiNSCs) that home to tumors and engineered the hiNSCs to release the cytotoxic protein TRAIL. Here we used intracerebroventricular (ICV) injections to deliver hiNSCs to metastatic foci. METHODS: We performed an in vitro efficacy co-culture assay, used in vivo studies to determine the migration, persistence, and efficacy of therapeutic hiNSCs against H460 NSCLC and triple-negative breast cancer MB231-Br tumors in the brain. Following the establishment of tumors in the brains of nude mice, hiNSCs were injected directly into the tumor or the ventricle contralateral to the site of tumor. The migration and persistence of hiNSCs was investigated by following the bioluminescence of the hiNSCs. The therapeutic efficacy of the hiNSCs was determined by following the bioluminescece of the tumor. RESULTS/CONCLUSION: Co-culture results demonstrated that hiNSC therapy reduced the viability of H460 and MB231-Br up to 75% and 99.8% respectively compared to non-treated controls. ICV-administered hiNSC serial imaging show that cells persisted for more than one week. Fluorescent analysis of tissue sections showed that hiNSCs co-localized with lateral and a contralateral tumors within 7 days. Using H460 and MB231-Br models, kinetic tracking of intracranial tumor volumes showed intratumoral or ICV-injected therapeutic hiNSCs reduced the growth rate of brain tumors by 31-fold and 3-fold, respectively. This work demonstrates for the first time that we can effectively deliver personalized cytotoxic tumor-homing cells through the ventricles to target brain metastases.


Sign in / Sign up

Export Citation Format

Share Document