Structural analysis of the E. coli RUVB branch migration protein by EM and image analysis

Author(s):  
X. Yu ◽  
K. Benson ◽  
A. Stasiak ◽  
I. Tsaneva ◽  
S. West ◽  
...  

We have been interested in the structure and function of proteins involved in genetic recombinaton. The ruv locus on the E. coli chromosome contains three genes (ruvA, ruvB and ruvC) that are important for genetic recombination and DNA repair. The ruvA and ruvB genes form part of the SOS response to DNA damage and encode the RuvA and RuvB proteins. Together, RuvA and RuvB promote the branch migration of Holliday junctions in a reaction that requires ATP hydrolysis. Each protein plays a defined role, with RuvA responsible for DNA binding (and, in particular, junction recognition), whereas the RuvB ATPase provides the motor for branch migration. Sequence analysis has identified RuvB as a member of a superfamily of helicases, and experimentally it has been shown that RuvB, in the presence of RuvA, acts as an ATP-dependent helicase.When purified RuvB protein was incubated (in the presence of the ATP analog, ATP-γ-S) with covalently closed, relaxed dsDNA, double-ringed structures were observed on the DNA in the electron microscope (Fig. 1). The DNA must be passing through the center of these rings, since the rings are always aligned along a common axis.

Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

Correlations between structure and function of biological macromolecules have been studied intensively for many years, mostly by indirect methods. High resolution electron microscopy is a unique tool which can provide such information directly by comparing the conformation of biopolymers in their biologically active and inactive state. We have correlated the structure and function of ribosomes, ribonucleoprotein particles which are the site of protein biosynthesis. 70S E. coli ribosomes, used in this experiment, are composed of two subunits - large (50S) and small (30S). The large subunit consists of 34 proteins and two different ribonucleic acid molecules. The small subunit contains 21 proteins and one RNA molecule. All proteins (with the exception of L7 and L12) are present in one copy per ribosome.This study deals with the changes in the fine structure of E. coli ribosomes depleted of proteins L7 and L12. These proteins are unique in many aspects.


Author(s):  
E. H. Egelman ◽  
X. Yu

The RecA protein of E. coli has been shown to mediate genetic recombination, regulate its own synthesis, control the expression of other genes, act as a specific protease, form a helical polymer and have an ATPase activity, among other observed properties. The unusual filament formed by the RecA protein on DNA has not previously been shown to exist outside of bacteria. Within this filament, the 36 Å pitch of B-form DNA is extended to about 95 Å, the pitch of the RecA helix. We have now establishedthat similar nucleo-protein complexes are formed by bacteriophage and yeast proteins, and availableevidence suggests that this structure is universal across all of biology, including humans. Thus, understanding the function of the RecA protein will reveal basic mechanisms, in existence inall organisms, that are at the foundation of general genetic recombination and repair.Recombination at this moment is assuming an importance far greater than just pure biology. The association between chromosomal rearrangements and neoplasms has become stronger and stronger, and these rearrangements are most likely products of the recombinatory apparatus of the normal cell. Further, damage to DNA appears to be a major cause of cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kristi Powers ◽  
Raymond Chang ◽  
Justin Torello ◽  
Rhonda Silva ◽  
Yannick Cadoret ◽  
...  

AbstractEchocardiography is a widely used and clinically translatable imaging modality for the evaluation of cardiac structure and function in preclinical drug discovery and development. Echocardiograms are among the first in vivo diagnostic tools utilized to evaluate the heart due to its relatively low cost, high throughput acquisition, and non-invasive nature; however lengthy manual image analysis, intra- and inter-operator variability, and subjective image analysis presents a challenge for reproducible data generation in preclinical research. To combat the image-processing bottleneck and address both variability and reproducibly challenges, we developed a semi-automated analysis algorithm workflow to analyze long- and short-axis murine left ventricle (LV) ultrasound images. The long-axis B-mode algorithm executes a script protocol that is trained using a reference library of 322 manually segmented LV ultrasound images. The short-axis script was engineered to analyze M-mode ultrasound images in a semi-automated fashion using a pixel intensity evaluation approach, allowing analysts to place two seed-points to triangulate the local maxima of LV wall boundary annotations. Blinded operator evaluation of the semi-automated analysis tool was performed and compared to the current manual segmentation methodology for testing inter- and intra-operator reproducibility at baseline and after a pharmacologic challenge. Comparisons between manual and semi-automatic derivation of LV ejection fraction resulted in a relative difference of 1% for long-axis (B-mode) images and 2.7% for short-axis (M-mode) images. Our semi-automatic workflow approach reduces image analysis time and subjective bias, as well as decreases inter- and intra-operator variability, thereby enhancing throughput and improving data quality for pre-clinical in vivo studies that incorporate cardiac structure and function endpoints.


1999 ◽  
Vol 79 (1) ◽  
pp. S23-S45 ◽  
Author(s):  
DAVID N. SHEPPARD ◽  
MICHAEL J. WELSH

Sheppard, David N., and Michael J. Welsh. Structure and Function of the CFTR Chloride Channel. Physiol. Rev. 79 , Suppl.: S23–S45, 1999. — The cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ABC transporter family that forms a novel Cl− channel. It is located predominantly in the apical membrane of epithelia where it mediates transepithelial salt and liquid movement. Dysfunction of CFTR causes the genetic disease cystic fibrosis. The CFTR is composed of five domains: two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory (R) domain. Here we review the structure and function of this unique channel, with a focus on how the various domains contribute to channel function. The MSDs form the channel pore, phosphorylation of the R domain determines channel activity, and ATP hydrolysis by the NBDs controls channel gating. Current knowledge of CFTR structure and function may help us understand better its mechanism of action, its role in electrolyte transport, its dysfunction in cystic fibrosis, and its relationship to other ABC transporters.


1995 ◽  
Vol 347 (1319) ◽  
pp. 21-25 ◽  

Over the past three or four years, great strides have been made in our understanding of the proteins involved in recombination and the mechanisms by which recombinant molecules are formed. This review summarizes our current understanding of the process by focusing on recent studies of proteins involved in the later steps of recombination in bacteria. In particular, biochemical investigation of the in vitro properties of the E. coli RuvA, RuvB and RuvC proteins have provided our first insight into the novel molecular mechanisms by which Holliday junctions are moved along DNA and then resolved by endonucleolytic cleavage.


2005 ◽  
Vol 73 (10) ◽  
pp. 6332-6339 ◽  
Author(s):  
Charlotte M. A. Linde ◽  
Susanna Grundström ◽  
Erik Nordling ◽  
Essam Refai ◽  
Patrick J. Brennan ◽  
...  

ABSTRACT Granulysin and NK-lysin are homologous bactericidal proteins with a moderate residue identity (35%), both of which have antimycobacterial activity. Short loop peptides derived from the antimycobacterial domains of granulysin, NK-lysin, and a putative chicken NK-lysin were examined and shown to have comparable antimycobacterial but variable Escherichia coli activities. The known structure of the NK-lysin loop peptide was used to predict the structure of the equivalent peptides of granulysin and chicken NK-lysin by homology modeling. The last two adopted a secondary structure almost identical to that of NK-lysin. All three peptides form very similar three-dimensional (3-D) architectures in which the important basic residues assume the same positions in space. The basic residues in granulysin are arginine, while those in NK-lysin and chicken NK-lysin are a mixture of arginine and lysine. We altered the ratio of arginine to lysine in the granulysin fragment to examine the importance of basic residues for antimycobacterial activity. The alteration of the amino acids reduced the activity against E. coli to a larger extent than that against Mycobacterium smegmatis. In granulysin, the arginines in the loop structure are not crucial for antimycobacterial activity but are important for cytotoxicity. We suggest that the antibacterial domains of the related proteins granulysin, NK-lysin, and chicken NK-lysin have conserved their 3-D structure and their function against mycobacteria.


2021 ◽  
Author(s):  
man zhou

SMC (structural maintenance of chromosomes) complexes share conserved architectures and function in chromosome maintenance via an unknown mechanism. Here we have used single-molecule techniques to study MukBEF, the SMC complex in Escherichia coli. Real-time movies show MukB alone can compact DNA and ATP inhibits DNA compaction by MukB. We observed that DNA unidirectionally slides through MukB, potentially by a ratchet mechanism, and the sliding speed depends on the elastic energy stored in the DNA. MukE, MukF and ATP binding stabilize MukB and DNA interaction, and ATP hydrolysis regulates the loading/unloading of MukBEF from DNA. Our data suggests a new model for how MukBEF organizes the bacterial chromosome in vivo; and this model will be relevant for other SMC proteins.


2021 ◽  
Author(s):  
Heesu Kim ◽  
Dong Gun Lee

Abstract Hydrogen peroxide (H2O2) is a debriding agent that damages the microbial structure and function by generating various reactive oxygen species (ROS). H2O2-produced hydroxyl radical (OH∙) also exert oxidative stress on microorganisms. The spread of antibiotic resistance in bacteria is a serious issue worldwide, and greater efforts are needed to identify and characterize novel antibacterial mechanisms to develop new treatment strategies. Therefore, this study aimed to clarify the relationship between H2O2 and Escherichia coli and to elucidate a novel antibacterial mechanism(s) of H2O2. Following H2O2 exposure, increased levels of 8-hydroxyldeoxyguanosine and malondialdehyde indicated that H2O2 accelerates oxidation of bacterial DNA and lipids in E. coli. As oxidative damage worsened, the SOS response was triggered. Cell division arrest and resulting filamentation were identified in cells, indicating that LexA was involved in DNA replication. It was also verified that RecA, a representative SOS gene, helps self-cleavage of LexA and acts as a bacterial caspase-like protein. Our findings also showed that dinF is essential to preserve E. coli from H2O2-induced ROS, and furthermore, demonstrated that H2O2-induced SOS response and SOS genes participate differently in guarding E. coli from oxidative stress. As an extreme SOS response is considered apoptosis-like death (ALD) in bacteria, additional experiments were performed to examine the characteristics of ALD. DNA fragmentation and membrane depolarization appeared in H2O2-treated cells, suggesting that H2O2 causes ALD in E. coli. In conclusion, our investigations revealed that ALD is a novel antibacterial mode of action(s) of H2O2 with important contributions from SOS genes.


Sign in / Sign up

Export Citation Format

Share Document