scholarly journals On the lattice parameter and thermal expansion coefficient of Silicon [Comments on the paper “Influence of thermal expansion on the lattice parameter of silicon,” F. Liu, Powder Diffr. 9, 260–264 (1994)]

1995 ◽  
Vol 10 (3) ◽  
pp. 223-224
Author(s):  
W. Paszkowicz
1988 ◽  
Vol 140 ◽  
Author(s):  
A.K. Gangopadhyay ◽  
M.E. Fine ◽  
H.S. Cheng

AbstractThe surface regions of α-alumina and hot pressed silicon nitride were modified by suitable alloying in order to improve their wear resistance. The surface modification in polycrystalline α-alumina was done by diffusing chromia into the surface region which resulted in the formation of a thin layer of A12O3 - Cr9O3 solid solution which has a lower thermal expansion coefficient than pure α-alumina. Also Cr2O3 has a larger lattice parameter than α-alumina thus during cooling the surface was put into compression. The surface region of hot pressed silicon nitride was modified by diffusing α-alumina into the surface which resulted in the formation of a thin sialon layer. A surface compressive stress was again introduced due to the lower thermal expansion coefficient and larger latticeparameter of sialon compared to silicon nitride.Wear tests were conducted against 52100 steel under both lubricated and unlubricated sliding contact using a block on ring apparatus. The wear resistance of chromia surface alloyed α-alumina was improved considerably over unalloyed α-alumina under both lubricated and unlubricated conditions. The wear resistance of alumina surface alloyed silicon nitride was also improved over unalloyed silicon nitride under both lubricated and unlubricated conditions.Different wear modes were identified by examining the worn surfaces under the scanning electron microscope.


2016 ◽  
Vol 44 (4) ◽  
pp. 287-296 ◽  
Author(s):  
Dmitriy A. Chareev ◽  
Valentin O. Osadchii ◽  
Andrey A. Shiryaev ◽  
Alexey N. Nekrasov ◽  
Anatolii V. Koshelev ◽  
...  

1984 ◽  
Vol 17 (5) ◽  
pp. 359-360
Author(s):  
S. K. Shadangi ◽  
U. K. Shadangi ◽  
S. C. Panda

The Debye–Scherrer pattern of the alloy Ni80Zr20 clearly shows the presence of a nickel solid-solution phase along with a new intermetallic phase Ni23Zr6, which seems to be isostructural with the Co23Zr6 phase. The thermal expansion coefficient of the Ni23Zr6 phase has been investigated in the temperature range 1003–1493 K. Linear variation of lattice parameter with temperature has been observed. The thermal expansion coefficient remains almost constant throughout this temperature interval.


2013 ◽  
Vol 27 (25) ◽  
pp. 1350180 ◽  
Author(s):  
RAGHUVESH KUMAR ◽  
GEETA SHARMA ◽  
MUNISH KUMAR

A simple theoretical model is developed to study the effect of size and temperature on the coefficient of thermal expansion and lattice parameter of nanomaterials. We have studied the size dependence of thermal expansion coefficient of Pb , Ag and Zn in different shape viz. spherical, nanowire and nanofilm. A good agreement between theory and available experimental data confirmed the model predictions. We have used these results to study the temperature dependence of lattice parameter for different size and also included the results of bulk materials. The temperature dependence of lattice parameter of Zn nanowire and Ag nanowire are found to present a good agreement with the experimental data. We have also computed the temperature and size dependence of lattice parameter of Se and Pb for different shape viz. spherical, nanowire and nanofilm. The results are discussed in the light of recent research on nanomaterials.


1994 ◽  
Vol 9 (4) ◽  
pp. 260-264 ◽  
Author(s):  
Fengchao Liu

Considering the thermal expansion of silicon at ambient conditions, the lattice parameter will change 0.00032 Å for a 10 °C range. This range is measurable with modern diffraction instrumentation illustrating the importance of knowing the accurate lattice parameter, the temperature of measurement, and the thermal expansion coefficient. The best value for the expansion coefficient is 2.45×10−6/°C.


2006 ◽  
Vol 407 (1-2) ◽  
pp. 263-267 ◽  
Author(s):  
Si-Hyung Kim ◽  
Han-Soo Kim ◽  
Young-Woo Lee ◽  
Dong-Seong Sohn ◽  
Dong-Soo Suhr

2007 ◽  
Vol 1043 ◽  
Author(s):  
Masayoshi Uno ◽  
Ken Kurosaki ◽  
Shinsuke Yamanaka ◽  
Kazuo Minato

AbstractWe made various nitride fuels containing simulated FP elements and evaluated the effect of these FP elements on the properties of the nitrides. For Uranium Neodymium nitride solid solution the lattice parameter increased with Nd content, thermal expansion coefficient did not change and thermal conductivity decreased with Nd content. The thermal expansion for Pd containing UN, where Pd precipitated as UPd3 in the grain boundaries of UN, was nearly the same as that of UN and the thermal conductivity for Pd containing in the UN matrix decreased with Pd content. For Mo containing UN Mo precipitated as Mo metal isotropically. Both the thermal expansion and thermal conductivity did not vary with Mo content This might result from the low Mo contents at these simulated burnups.


2014 ◽  
Vol 28 (26) ◽  
pp. 1450209
Author(s):  
Pham Dinh Tam ◽  
Nguyen Quang Hoc ◽  
Bui Duc Tinh ◽  
Nguyen Duc Hien

The equation of state, the expressions of lattice parameter and thermal expansion coefficient in general form are obtained by the statistical moment method. Applying to Cu , Al and Ni metals, we determine these properties in simple analytic form for each metal. Numerical results for the thermal expansion coefficient of these metals in different temperatures and pressures are in good agreement with experiments.


Sign in / Sign up

Export Citation Format

Share Document