Understory cover crops in pecan orchards: Possible management systems

1991 ◽  
Vol 6 (2) ◽  
pp. 50-62 ◽  
Author(s):  
Robert L. Bugg ◽  
Marianne Sarrantonio ◽  
James D. Dutcher ◽  
Sharad C. Phatak

AbstractAnnual legumes and mixtures of annual legumes and grasses can perform several functions as understory cover crops in pecan orchards, such as providing nitrogenrich organic matter to improve soil fertility, or by sustaining lady beetles and other arthropods that may aid the biological control of pecan pests. Remaining questions concern selection of appropriate plant materials; whether to use cover crops singly or in mixtures; how to ensure reseeding as well as a substantial N contribution; whether, when, and how to use mowing and tillage; and fertilization options. Different considerations apply when dealing with cool- vs. warm-season cover crops. With minor adjustments, growers could adapt present cultural practices to include cool-season cover crops. These could be used throughout the orchard, by establishing appropriate self-reseeding species and avoiding both excessive mowing and indiscriminate placement of N-rich fertilizers. Within alleys, alternating 2-m strips of cool-season cover crops could be tilled in mid to late April or allowed to mature. The tilled strips would supply N to pecan trees immediately, whereas the adjoining untilled (remnant) strips could be mowed after seed is mature, to ensure dispersal of seed and reestablishment of cover crops over the entire alley. Cool-season annual legumes that die or are killed in late spring will probably furnish N and other nutrients at a suitable time, particularly in orchards with sprinkler irrigation. Warm-season cover crops, if desired, should be restricted to alleys to reduce possible competition with pecan. Alleys provide better illumination than do tree rows during periods when pecan trees are in leaf, and the tillage mentioned above will encourage emergence of warm-season cover crops. If these die or are killed in late summer or early fall, timing of N release may not be optimal, in the absence of adequate irrigation. Many options and tradeoffs need to be explored before choosing a cover-crop system. Attimes, several objectives may appear to conflict, and even delicately-managed mixtures of species may not fulfill all the desired functions.

2013 ◽  
Vol 14 (1) ◽  
pp. 4
Author(s):  
Damon L. Smith ◽  
Nathan R. Walker

In the transition zone of the USA, cool-season grasses such as tall fescue are often planted in shaded areas, where warm-season grasses are less adapted. The most damaging disease of tall fescue is brown patch, caused by Rhizoctonia solani. Fungicide applications and cultural practices are often used to manage brown patch in this region. A three-year study was implemented in Oklahoma to evaluate ready-to-use fungicides available to residential lawn owners and compare these to several common commercial fungicide formulations used by professional lawn care applicators. A selection of fungicides representing products commonly available to the residential market and commercial standards were applied to small plots of tall fescue or tall fescue/Kentucky bluegrass mixtures from 2008 to 2010. All products tested, with the exception of azoxystrobin, provided limited or inconsistent control of brown patch and resulted in lower turfgrass quality in all years. Further examination of carrier type (granular vs. liquid) and timing (preventive vs. curative) did not result in strong differences in the level of brown patch control or overall quality. These studies suggest that control of brown patch in tall fescue in the transition zone should focus on integrated disease management principals and not only on applications of fungicides directed at the residential market. Accepted for publication 5 August 2013. Published 22 October 2013.


2014 ◽  
Vol 94 (7) ◽  
pp. 1139-1148 ◽  
Author(s):  
B. Biligetu ◽  
P. G. Jefferson ◽  
R. Muri ◽  
M. P. Schellenberg

Biligetu, B., Jefferson, P. G., Muri, R. and Schellenberg, M. P. 2014. Late summer forage yield, nutritive value, compatibility of warm-and cool-season grasses seeded with legumes in western Canada. Can. J. Plant Sci. 94: 1139–1148. In late summer and fall, quality and quantity of forage are important for weight gain by grazing animals in western Canada. The objective of this study was to evaluate forage nutritive value, dry matter (DM) yield, and compatibility of crested wheatgrass [Agropyron cristatum (L.) Gaertn.], meadow bromegrass (Bromus riparius Rehm.), green needle grass [Nasella viridula (Trin.) Barkworth], northern wheatgrass [Elymus lanceolatus (Scribn. & J. G. Sm.) Gould], western wheatgrass [Pascopyrum smithii (Rydb.) Barkworth & D.R. Dewey], Russian wildrye [Psathyrostachys juncea (Fisch.) Nevski], big bluestem (Andropogon gerardii Vitman), or switchgrass (Panicum virgatum L.) in eight grass monocultures, and their binary mixtures with alfalfa (Medicago sativa L.), sainfoin (Onobrychis viciifolia Scop.), or cicer-milkvetch (Astragalus cicer L.) harvested once in August or September. A field study was conducted over a 7-yr period from 1998 to 2004 near Swift Current (lat. 50°25'N, long. 107°44'W, 824 m elev.), SK, Canada, using a randomized complete block design. Forage DM yield was similar between August and September harvests (P>0.05). Binary mixtures of alfalfa–grass produced highest (P<0.05) DM yield ranging from 2449 to 2758 kg ha−1. The monoculture of crested wheatgrass (2143 kg ha−1), sainfoin with crested wheatgrass (2061 kg ha−1), and cicer-milkvetch with green needle grass (1838 kg ha−1) or cicer-milkvetch with western wheatgrass (1861 kg ha−1) produced the second highest (P<0.05) DM yields in the ranking. The two warm-season grasses produced the lowest (P>0.05) DM yields over the 7-yr period. Monocultures of green needle grass or northern wheatgrass had the highest acid detergent fiber (ADF) and neutral detergent fiber (NDF), while warm-season grasses with legumes had the lowest. Alfalfa with western wheatgrass and alfalfa with Russian wildrye had the highest crude protein (CP) concentrations. Monocultures of meadow bromegrass, crested wheatgrass, green needle grass, or cicer-milkvetch with meadow bromegrass, and sainfoin with crested wheatgrass had the lowest CP concentrations. In vitro organic matter digestibility (IVOMD) was greater for mixtures than for the grass monocultures. Concentration of Ca and P was greater for warm-season grasses than cool-season grasses. Alfalfa with western wheatgrass was the best combination considering yield, quality, and compatibility for deferred grazing in late summer and fall in the semiarid prairies. Tested warm-season grasses are not recommended for seeding as binary mixtures with legumes for southwestern Saskatchewan.


1994 ◽  
Vol 9 (3) ◽  
pp. 127-134 ◽  
Author(s):  
Michael W. Smith ◽  
Raymond D. Eikenbary ◽  
Don C. Arnold ◽  
B. Scott Landgraf ◽  
Glenn G. Taylor ◽  
...  

AbstractWe evaluated selected cool-season annual and perennial legumes as potential ground covers to supply nitrogen and to increase beneficial arthropod populations in a pecan orchard. Densities of aphids (Homoptera: Aphididae), lady beetles (Coleoptera: Coccinellidae), damsel bug (Hemiptera: Nabidae), green lacewings (Neuroptera: Chrysopidae), brown lacewings (Neuroptera: Hemerobiidae), hover flies (Diptera: Syrphidae), spined soldier bug and other stink bugs (Hemiptera: Pentatomidae), and spiders (Araneida) were monitored at 7–14 day intervals during the growing season for three years. Aboveground biomass production and nitrogen content of the legumes was measured for two years. Aphids peaked during early spring each year, with the highest density usually on ‘Dixie’ crimson clover and ‘Kenland’ red clover. Density of lady beetles was positively correlated with that of aphids, but spider densities were not. Other arthropods usually were not abundant. Nitrogen in the tops of the annual legumes ranged from 20 kg/ha to 89 kg/ha when assessed after a single harvest at anthesis; for the perennial legumes it was from 108 kg/ha to 179 kg/ha following two harvests in June and September. We chose two annual legumes (‘Dixie’ crimson clover and hairy vetch) and two perennial legumes (‘Louisiana S-1’ white clover and ‘Kenland’ red clover) for further evaluation.


Author(s):  
Samuel A. Wyffels ◽  
Maryse Bourgault ◽  
Julia M. Dafoe ◽  
Peggy F. Lamb ◽  
Darrin L. Boss

Abstract Crop-livestock integration has demonstrated that cover crops can be terminated using livestock grazing with minimal negative impacts on soil health, however, provides little information on system-level approaches that mutually benefit soil health and both crop and livestock production. Therefore, the objective of this research was to examine the effects of cover crop mixtures on biomass production, quality and the potential for nitrate toxicity on a dryland wheat-cover crop rotation. This research was conducted at the Montana State University-Northern Agricultural Research Center near Havre, MT (48°29′N, −109°48′W) from 2012 to 2019. This experiment was conducted as a randomized-complete-block design, where 29 individual species were utilized in 15 different cover crop mixtures in a wheat-cover crop rotation. Cover crop mixtures were classified into four treatment groups, including (1) cool-season species, (2) warm-season species dominant, (3) cool and warm-season species mixture (mid-season), and (4) a barley (Hordeum vulgare) control. All cover crop mixtures were terminated at anthesis of cool-season cereal species to avoid volunteer cereal grains in the following wheat crop. At the time of cover crop termination, dry matter forage production was estimated and analyzed for crude protein, total digestible nutrients and nitrates as indicators of forage quality. All mixtures containing oats (Avena sativa) had greater (P ⩽ 0.03) biomass production than other mixtures within their respective treatment groups (cool- and mid-season). Forage biomass was influenced by cover crop treatment group, with the barley producing the greatest (P < 0.01) amount of forage biomass when compared to cool-, mid- and warm-season cover crop treatments. Total digestible nutrients were greater (P < 0.01) in the barley control compared to the cool- and mid-season treatment groups. Crude protein was greatest in the warm-season treatment group (P < 0.01) compared to the barley control, cool- and mid-season treatment groups. The barley control produced fewer nitrates (P ⩽ 0.05) than the cool-, mid- and warm-season treatment groups; however, all cover crop mixtures produced nitrates at levels unsafe for livestock consumption at least one year of the study. The relatively high and variable nitrate levels of all cover crop mixtures across years in this study suggest that forage should be tested for nitrates before grazing. In conclusion, our research suggests that in a dryland wheat-cover crop rotation that requires early-July termination, cool-season cover crop mixtures are the most suitable forage source for livestock grazing most years.


2021 ◽  
Author(s):  
Abdül Halim Orta ◽  
Seray Kuyumcu

&lt;p&gt;The aim of this study is to determine the effects of deficit irrigation applications at different levels on the cool-season and warm-season turfgrass species irrigated by sprinkler irrigation. Field experiments were conducted in the Agricultural Production and Research Center (TURAM) of Silivri Municipality in G&amp;#252;m&amp;#252;&amp;#351;yaka District located between the boundaries of Tekirda&amp;#287; and Istanbul - TURKEY, at growing season 2019. In this research, two different turfgrass types (K: Cool season turfgrass and B: Warm season turfgrass), at three different irrigation threshold were examined in split-plots in randomized blocks design with three replications. Cool season turfgrass types lost its green colour completely after July due to the dry and hot summer season and the total amount of irrigation water applied in different irrigation strategies varied between 101.4 mm - 303.9 mm, seasonal evapotranspiration values varied between 217.7 mm - 391.5 mm, and daily evapotranspiration values varied between 2.4 mm/day - 4.3 mm/day. As for warm-season turfgrass types that managed to stay alive and kept its green colour throughout whole summer period; the same values varied between 203,6 mm - 591,6 mm; 328.4 mm - 593.9 mm; and 2,1 mm/day &amp;#8211; 3,9 mm/day, respectively. In the 3-month period (May-June-July) in which both types of grass could survive, the seasonal evapotranspiration values were 11% more in the cool season turfgrass than that of warm season turfgrass. When daily evapotranspiration values were compared, it was observed that it was 10-14% more in cool-season turfgrass than in warm-season turfgrass. Average CWSI values calculated for different irrigation treatments were 0,57-0,66 for cool-season turf, 0,52-0,66 for warm-season turf besides, average CWSI values before irrigation application were 0,68-0,79 for cool-season turf, 0,69-0,79 for warm-season turf. Changes in the vegetation height, fresh yield, dry yield, plant density, color, and quality properties were monitored depending on the irrigation levels. When factors such as the amount of irrigation water applied, water-use and irrigation water-use efficiency, and quality parameters are evaluated together; none of treatments were adequate to keep cool-seasons varieties green after July. In the warm season turfgrass variety, although all irrigation levels provide the desired level for plant growth and quality, S2 treatment has been suggested when all parameters mentioned above are taken into consideration. Besides, Jensen Haise method (JH) was chosen as the best equation when reference evapotranspiration estimation methods were compared for both types of turf and crop coefficient (kc) curves have been prepared for both turfgrass species.&lt;/p&gt;


EDIS ◽  
2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Jose C.B. Dubeux ◽  
Nicolas DiLorenzo ◽  
Kalyn Waters ◽  
Jane C. Griffin

Florida has 915,000 beef cows and 125,000 replacement heifers (USDA, 2016). Developing these heifers so that they can become productive females in the cow herd is a tremendous investment in a cow/calf operation, an investment that takes several years to make a return. The good news is that there are options to develop heifers on forage-based programs with the possibility of reducing costs while simultaneously meeting performance targets required by the beef industry. Mild winters in Florida allows utilization of cool-season forages that can significantly enhance the performance of grazing heifers. During the warm-season, integration of forage legumes into grazing systems will provide additional nutrients to meet the performance required to develop a replacement heifer to become pregnant and enter the mature cow herd. In this document, we will propose a model for replacement heifer development, based on forage research performed in trials at the NFREC Marianna.   


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501e-502
Author(s):  
Cody J. White ◽  
Michael A. Schnelle ◽  
Gerrit W. Cuperus

A survey was designed to assess high-risk areas with respect to environmental contamination, specifically how it relates to water quality. Oklahoma growers of all economic levels, retail and/or wholesale, were queried at their place of business for their current state of implementing best management practices (BMPs) and other strategic actions that could potentially affect current and future water quality standards. Specific areas such as the physical environment of the nursery, primary pesticides and fertilizers used, Integrated Pest Management (IPM) practices, and employee safety training were covered as well as other aspects germane to preserving and protecting current water quality and related environmental issues. More than 75 nurseries were surveyed and given the opportunity to participate in future training at Oklahoma State Univ. Results indicated that nurseries have not fully implemented many BMPs, but have adopted fundamental IPM approaches. The stage is set for the implementation of the next phase of expansion and refinement into ecologically based programs such as propagation and sale of low pesticide input plant materials, improved cultural practices, and the integration of environmentally sound management approaches. As an example, many growers are in the process of phasing out calendar-based pesticide application programs in favor of aesthetic and/or economic threshold-driven pesticide spray programs.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 128-128
Author(s):  
Hannah Speer ◽  
Hannah Riley ◽  
Robert Cushman ◽  
Harvey Freetly ◽  
Mary Drewnoski

Abstract Spring-born heifers (n = 1,012) weaned at 148 ± 17 d were used in a 3-yr study to evaluate performance in winter development systems which utilized cover crop and corn residue grazing. Heifers were assigned to 1 of 3 treatments: grazing corn residue with dried distillers grains (CD) or wheat midds (CW) supplementation, or grazing late summer planted oat-brassica cover crop followed by corn residue supplemented dried distillers grains (CC). Grazing of corn residue (CD and CW) and cover crop (CC) began in early November. Supplementation during the corn residue phase was adjusted to target ~55% of mature BW (338 kg) at breeding. After 63 d, CC were moved to corn residue; on d 77 CD and CW began receiving grower ration. In mid-February (d 98), heifers were comingled and managed in a single group. Breeding season began in June and lasted for 29 d. Prior to corn residue grazing, ADG of CC was greater (0.76 kg/d; P&lt; 0.01) than CD or CW (0.58 kg/d and 0.49 kg/d, respectively). Gain during the last 35 d of the winter period for CC was 0.13 kg/d less than CW (P&lt; 0.01) but not different from CD. Overall winter ADG was greater (P&lt; 0.05) for CC (0.62 kg/d) than CD (0.53 kg/d) or CW (0.50 kg/d). Percent of mature BW prior to breeding was 52% for CC and 50% for CD and CW. May reproductive tract scores did not differ (P=0.26) between CC and CW but were greater (P&lt; 0.05) in CC than CD. Pregnancy rates were affected by treatment (P&lt; 0.01), with CC (76%) being greater than CD (68%) and CW (64%). Utilizing oat-brassica cover crops early in the winter followed by a lower rate of gain while grazing corn residue appear to be effective for developing beef heifers. USDA is an equal opportunity employer and provider.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 264
Author(s):  
Kathryn E. Ritz ◽  
Bradley J. Heins ◽  
Roger D. Moon ◽  
Craig C. Sheaffer ◽  
Sharon L. Weyers

Organic dairy cows were used to evaluate the effect of two organic pasture production systems (temperate grass species and warm-season annual grasses and cool-season annuals compared with temperate grasses only) across two grazing seasons (May to October of 2014 and 2015) on milk production, milk components (fat, protein, milk urea nitrogen (MUN), somatic cell score (SCS)), body weight, body condition score (BCS), and activity and rumination (min/day). Cows were assigned to two pasture systems across the grazing season at an organic research dairy in Morris, Minnesota. Pasture System 1 was cool-season perennials (CSP) and Pasture System 2 was a combination of System 1 and warm-season grasses and cool-season annuals. System 1 and System 2 cows had similar milk production (14.7 and 14.8 kg d−1), fat percentage (3.92% vs. 3.80%), protein percentage (3.21% vs. 3.17%), MUN (12.5 and 11.5 mg dL−1), and SCS (4.05 and 4.07), respectively. Cows in System 1 had greater daily rumination (530 min/day) compared to cows in System 2 (470 min/day). In summary, warm-season annual grasses may be incorporated into grazing systems for pastured dairy cattle.


Sign in / Sign up

Export Citation Format

Share Document