Non-Phenoxy Herbicides for Perennial Broadleaf Weed Control in Cool-Season Turf

1990 ◽  
Vol 4 (3) ◽  
pp. 555-559 ◽  
Author(s):  
Joseph C. Neal

Field experiments were conducted to compare non-phenoxy herbicides with 2,4-D for broadleaf plantain, dandelion, and white clover control in cool-season turf. Herbicides tested were BAS 514, chlorflurenol, clopyralid, dicamba, triclopyr, and 2,4-D, alone and in combinations. Broadleaf plantain was controlled by 2,4-D and by clopyralid plus triclopyr at 0.21 plus 0.63 kg ae ha-1. Dandelion was controlled by 2,4-D, BAS 514 at 0.84 kg ha-1, and by the combination of clopyralid plus triclopyr at 0.16 plus 0.47 kg ha-1. Chlorflurenol, clopyralid, dicamba, or triclopyr did not control dandelion. White clover was controlled by all herbicides except 2,4-D. The combination of clopyralid plus triclopyr was the only non-phenoxy treatment which controlled broadleaf plantain, dandelion, and white clover.

2011 ◽  
Vol 25 (3) ◽  
pp. 506-510 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart ◽  
James T. Brosnan ◽  
Gregory K. Breeden

Fenoxaprop effectively controls crabgrass in tall fescue turf, but antagonism with growth-regulating herbicides reduces potential to apply fenoxaprop in combination with many herbicides registered for broadleaf weed control. Aminocyclopyrachlor is a new broadleaf weed control herbicide that has not been evaluated in combination with fenoxaprop. Field experiments were conducted in Georgia, New Jersey, and Tennessee to investigate tank mixtures of fenoxaprop with aminocyclopyrachlor for smooth crabgrass and white clover control. Fenoxaprop alone exhibited substantial activity on smooth crabgrass but control was greater with fenoxaprop + aminocyclopyrachlor treatments. By 4 and 6 wk after treatment (WAT), approximately 22 and 44% less fenoxaprop was required to achieve 80% smooth crabgrass control when the herbicide was tank-mixed with aminocyclopyrachlor at 52.5 and 79 g ai ha−1, respectively. Fenoxaprop did not reduce white clover control with aminocyclopyrachlor because 97% control was achieved by 4 WAT for all aminocyclopyrachlor + fenoxaprop treatments. Tall fescue was not injured by any treatment. Results suggest aminocyclopyrachlor enhances fenoxaprop efficacy for smooth crabgrass control in tall fescue.


2021 ◽  
pp. 1-24
Author(s):  
Zhikui Hao ◽  
Muthukumar Bagavathiannan ◽  
Ying Li ◽  
Mingnan Qu ◽  
Zhiyong Wang ◽  
...  

Abstract Wood vinegar, a product of pyrolysis, can induce phytotoxicity on plants when applied at an adequate rate and concentration. The objective of this research was to investigate wood vinegar obtained from the pyrolysis of apple tree branches for weed control in dormant zoysiagrass. In environment-controlled growth chambers, white clover visual injury and shoot mass reduction compared to the nontreated control were evaluated after wood vinegar application at 1000, 2000, or 4000 L ha-1 under 10 or 30 C temperature conditions. Averaged across rates, wood vinegar rapidly desiccated white clover and caused 83 and 71% visual injury at 10 and 30 C, respectively, at 1 d after treatment (DAT). Averaged across temperatures, wood vinegar at 1000, 2000, and 4000 L ha-1 reduced white clover shoot mass by 56, 81, and 98% from the nontreated control at 10 DAT, respectively. In field experiments, weed control increased as wood vinegar rates increased from 1000 to 5000 L ha-1 in dormant zoysiagrass. The effective application dose of wood vinegar required to provide 90% control (ED90) of annual fleabane, Persian speedwell, and white clover was determined to be 2450, 2300, and 4020 L ha-1, respectively, at 2 weeks after treatment. Turf quality did not differ among the wood vinegar treatments and the nontreated control when zoysiagrass completely recovered from dormancy. Overall, results illustrate that wood vinegar resulting from the pyrolysis of apple tree branches can be used as a nonselective herbicide in dormant turfgrass, offering a new non-synthetic herbicide option for weed control in managed turf.


2010 ◽  
Vol 24 (4) ◽  
pp. 515-522 ◽  
Author(s):  
Kristin K. Payne ◽  
Byron B. Sleugh ◽  
Kevin W. Bradley

Field experiments were conducted from 2007 through 2009 at four locations in Missouri to evaluate the effect of May and August herbicide applications on weed control, total biomass yield, and forage nutritive values. Experiments were conducted in established tall fescue pastures that contained natural infestations of common ragweed and tall ironweed. Treatments consisted of 2,4-D, metsulfuron, aminopyralid, 2,4-D + dicamba, 2,4-D + picloram, aminopyralid + 2,4-D, and 2,4-D + dicamba + metsulfuron. All herbicide treatments provided > 76% control of common ragweed 1 mo after treatment (MAT), except metsulfuron alone which provided ≤ 62% control. August applications provided greater reductions in common ragweed density than May applications the following spring. Few differences in tall ironweed density were observed, but metsulfuron-containing herbicides tended to provide the lowest reduction in tall ironweed stem density the following spring. Biomass yields were generally greater in nontreated compared to herbicide-treated plots. Crude protein (CP) concentration and relative feed value (RFV) were higher in nontreated compared with herbicide-treated biomass. Overall, the poorer nutritive values and lower biomass yields in the herbicide-treated compared with the nontreated biomass may be partially explained by the removal of common ragweed, tall ironweed, and legumes with the herbicide treatments. Pure samples of common ragweed and white clover were greater in nutritive values than pure samples of tall fescue at all June harvests. Results indicate that common ragweed offers nutritive values equivalent to or greater than tall fescue and white clover when harvested in June at the vegetative stage of growth and that the removal of common ragweed and tall ironweed with herbicide applications is not likely to improve forage nutritive values of the total harvested biomass of tall fescue pastures, at least by the season after treatment.


HortScience ◽  
2012 ◽  
Vol 47 (6) ◽  
pp. 798-800 ◽  
Author(s):  
John B. Workman ◽  
Patrick E. McCullough ◽  
F. Clint Waltz ◽  
James T. Brosnan ◽  
Gerald M. Henry

Turfgrass managers applying aminocyclopyrachlor for annual and perennial broadleaf weed control in cool-season turfgrasses may want to reseed into treated areas. Field experiments were conducted in Georgia), Tennessee, and Texas to investigate perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) reseeding intervals after aminocyclopyrachlor applications. Perennial ryegrass and tall fescue establishment were similar to the non-treated control after treatments of aminocyclopyrachlor and 2,4-dichlorophenoxyacetic acid (2,4-D) + dicamba + methylchlorophenoxypropionic acid (MCPP) at 0, 2, 4, or 6 weeks before seeding. Results demonstrate that no reseeding interval is required after aminocyclopyrachlor treatment. Perennial ryegrass and tall fescue can be safely seeded immediately after aminocyclopyrachlor treatment at 39, 79, and 158 g/a.i./ha.


1991 ◽  
Vol 5 (3) ◽  
pp. 616-621 ◽  
Author(s):  
Adrian J. Enache ◽  
Richard D. Ilnicki

Field experiments were conducted in 1986 to 1990 to determine the effect of different rates and application times of BAS 514 and dithiopyr alone and in combination on control of large crabgrass and dandelion in Kentucky bluegrass, tall fescue, and perennial ryegrass. Herbicides evaluated were applied PRE, early POST, and late POST. Results indicated that both herbicides provided excellent PRE control in all years. BAS 514 rates ranged from 0.84 to 0.56 kg ai ha-1. Rates of dithiopyr ranged from 0.43 to 0.56 kg ai ha-1. In addition to crabgrass control, both herbicides controlled dandelion, BAS 514 exhibiting slightly better activity than dithiopyr. BAS 514 at 0.84 to 1.12 kg ai ha-1 and dithiopyr at 0.26 to 0.56 kg ai ha-1 resulted in excellent early POST crabgrass control when applied at the one- to three-leaf stage of crabgrass. BAS 514 and dithiopyr applied late POST (2 to 3 tillers of crabgrass) resulted in 63 to 85% control of crabgrass and 29 to 85% control of dandelion at 10 wk after application. No weed control enhancement was evident from tank mixing the two herbicides. Excellent turf safety was demonstrated by both herbicides on all three turf species.


2012 ◽  
Vol 22 (1) ◽  
pp. 64-69 ◽  
Author(s):  
W. Carroll Johnson ◽  
David B. Langston ◽  
Daniel D. MacLean ◽  
F. Hunt Sanders ◽  
Reid L. Torrance ◽  
...  

Field experiments were conducted from 2008 through 2010 near Lyons, GA, to develop integrated weed management systems for organic Vidalia® sweet onion (Allium cepa) production. Treatments were a factorial arrangement of summer solarization, cultivation with a tine weeder, and a clove oil herbicide. Plots were solarized with clear plastic mulch during the summer fallow period before transplanting onion. Cultivation treatments were twice at 2-week intervals, four times at 2-week intervals, and a noncultivated control. Herbicide treatments were clove oil plus vinegar, clove oil plus an emulsified petroleum oil (EPO) insecticide used as an adjuvant, and a nontreated control. ‘Savannah Sweet’ onions were transplanted in early-December each year, with cultivation and herbicide applications events occurring the following January and February. Onions were harvested the following spring. In addition to yield measurement, a subsample of harvested onion was stored in a controlled atmospheric (CA) storage facility to evaluate treatment effects on diseases of stored onion. Summer fallow solarization did not control the cool-season weeds present in these trials. Cultivating transplanted onion with a tine weeder effectively managed cutleaf eveningprimrose (Oenothera laciniata) and swinecress (Coronopus didymus) and improved onion yields in 2 of 3 years. There was little difference in overall performance between two cultivations and four cultivations with the tine weeder. The 1 year of marginal weed control with the tine weeder was due to persistently wet soils during winter months that inhibited optimum performance of the implement. Clove oil, combined with vinegar or an EPO insecticide, provided marginal weed control and had no effect on onion yield. Diseases of stored onion were unaffected by any of the treatment combinations, although overall incidence of diseases of stored onion was higher in 2010 compared with other years. This corresponds with the 1 year of marginal weed control with the tine weeder, suggesting that the presence of weeds may be a factor related to disease incidence during storage.


Author(s):  
K.H. Widdup ◽  
T.L. Knight ◽  
C.J. Waters

Slow establishment of caucasian clover (Trifolium ambiguum L.) is hindering the use of this legume in pasture mixtures. Improved genetic material is one strategy of correcting the problem. Newly harvested seed of hexaploid caucasian clover germplasm covering a range of origins, together with white and red clover and lucerne, were sown in 1 m rows in a Wakanui soil at Lincoln in November 1995. After 21 days, the caucasian clover material as a group had similar numbers of emerged seedlings as white clover and lucerne, but was inferior to red clover. There was wide variation among caucasian clover lines (48-70% seedling emergence), with the cool-season selection from cv. Monaro ranked the highest. Recurrent selection at low temperatures could be used to select material with improved rates of seedling emergence. Red clover and lucerne seedlings produced significantly greater shoot and root dry weight than caucasian and white clover seedlings. Initially, caucasian clover seedlings partitioned 1:1 shoot to root dry weight compared with 3:1 for white clover. After 2 months, caucasian clover seedlings had similar shoot growth but 3 times the root growth of white clover. Between 2 and 5 months, caucasian clover partitioned more to root and rhizome growth, resulting in a 0.3:1 shoot:root ratio compared with 2:1 for white clover. Both clover species had similar total dry weight after 5 months. Unhindered root/ rhizome devel-opment is very important to hasten the establishment phase of caucasian clover. The caucasian clover lines KZ3 and cool-season, both selections from Monaro, developed seedlings with greater shoot and root growth than cv. Monaro. KZ3 continued to produce greater root growth after 5 months, indicating the genetic potential for improvement in seedling growth rate. Different pasture estab-lishment techniques are proposed that take account of the seedling growth characteristics of caucasian clover. Keywords: establishment, genetic variation, growth, seedling emergence, Trifolium ambiguum


2020 ◽  
Vol 57 (3) ◽  
pp. 199-210
Author(s):  
Rajib Kundu ◽  
Mousumi Mondal ◽  
Sourav Garai ◽  
Ramyajit Mondal ◽  
Ratneswar Poddar

Field experiments were conducted at research farm of Bidhan Chandra Krishi Viswavidyalaya, Kalyani, West Bengal, India (22°97' N latitude and 88°44' E longitude, 9.75 m above mean sea level) under natural weed infestations in boro season rice (nursery bed as well as main field) during 2017-18 and 2018-19 to evaluate the herbicidal effects on weed floras, yield, non-target soil organisms to optimize the herbicide use for sustainable rice-production. Seven weed control treatments including three doses of bispyribac-sodium 10% SC (150,200, and 250 ml ha-1), two doses of fenoxaprop-p-ethyl 9.3% EC (500 and 625 ml ha-1), one weed free and weedy check were laid out in a randomized complete block design, replicated thrice. Among the tested herbicides, bispyribac-sodium with its highest dose (250 ml ha-1) resulted in maximum weed control efficiency, treatment efficiency index and crop resistance index irrespective of weed species and dates of observation in both nursery as well as main field. Similar treatment also revealed maximum grain yield (5.20 t ha-1), which was 38.38% higher than control, closely followed by Fenoxaprop-p-ethyl (625 ml ha-1) had high efficacy against grasses, sedge and broadleaf weed flora. Maximum net return (Rs. 48765 ha-1) and benefit cost ratio (1.72) were obtained from the treatment which received bispyribac-sodium @ 250 ml ha-1. Based on overall performance, the bispyribac-sodium (250 ml ha-1) may be considered as the best herbicide treatment for weed management in transplanted rice as well as nursery bed.


2021 ◽  
pp. 1-28
Author(s):  
Nicholas T. Basinger ◽  
Nicholas S. Hill

Abstract With the increasing focus on herbicide-resistant weeds and the lack of introduction of new modes of action, many producers have turned to annual cover crops as a tool for reducing weed populations. Recent studies have suggested that perennial cover crops such as white clover could be used as living mulch. However, white clover is slow to establish and is susceptible to competition from winter weeds. Therefore, the objective of this study was to determine clover tolerance and weed control in established stands of white clover to several herbicides. Studies were conducted in the fall and winter of 2018 to 2019 and 2019 to 2020 at the J. Phil Campbell Research and Education Center in Watkinsville, GA, and the Southeast Georgia Research and Education Center in Midville, GA. POST applications of imazethapyr, bentazon, or flumetsulam at low and high rates, or in combination with 2,4-D and 2,4-DB, were applied when clover reached 2 to 3 trifoliate stage. Six weeks after the initial POST application, a sequential application of bentazon and flumetsulam individually, and combinations of 2,4-D, 2,4-DB, and flumetsulam were applied over designated plots. Clover biomass was similar across all treatments except where it was reduced by sequential applications of 2,4-D + 2,4-DB + flumetsulam in the 2019 to 2020 season indicating that most treatments were safe for use on establishing living mulch clover. A single application of flumetsulam at the low rate or a single application of 2,4-D + 2,4-DB provided the greatest control of all weed species while minimizing clover injury when compared to the non-treated check. These herbicide options allow for control of problematic winter weeds during clover establishment, maximizing clover biomass and limiting canopy gaps that would allow for summer weed emergence.


2021 ◽  
pp. 1-25
Author(s):  
Matthew J. R. Goddard ◽  
Clebson G. Gonçalves ◽  
Shawn D. Askew

Abstract Mesotrione typically requires multiple applications to control emerged weeds in turfgrass. Since it is absorbed by both foliage and roots, a controlled-release (CR) formulation could eliminate the need for multiple applications. Research was conducted evaluate simulated-release scenarios that mimic a potential CR mesotrione formulation. A soluble concentrate formulation of mesotrione was titrated to produce a stepwise change in mesotrione rates, which were applied daily to mimic predetermined release scenarios over a three-wk period. CR scenarios were compared to a broadcast treatment of mesotrione at 280 g ai ha-1 applied twice at three-wk intervals, and a nontreated. Mesotrione applied in three temporal release scenarios controlled creeping bentgrass, goosegrass, nimblewill, smooth crabgrass, and white clover equivalent to the standard sprayed mesotrione treatment in every comparison. However, each CR scenario injured tall fescue 2 to 7 times more than the standard treatment. Soil- and foliar-initiated repeat treatments were equivalent in most comparisons. Data indicates that mesotrione applied in a temporal range to simulate controlled release scenarios can deliver desired weed control efficacy comparable to sequential broadcast applications. More research is needed to elucidate proper timings and release scenarios to minimize turfgrass injury.


Sign in / Sign up

Export Citation Format

Share Document