Impact of Herbicides Applied Annually for Twenty-three Years in a Deciduous Orchard

1996 ◽  
Vol 10 (3) ◽  
pp. 587-591 ◽  
Author(s):  
Chester L. Foy ◽  
Charles R. Drake ◽  
Carlton L. Pirkey

A semi- and high-density apple and peach orchard was established at Blacksburg, VA. Starting 1 yr after transplanting, tree rows were treated with paraquat, 2,4-D, or amitrole plus simazine for 4 yr. Thereafter, diuron, simazine, or terbacil was applied in conjunction with paraquat or glyphosate. During the 12th growing season, young trees planted between existing trees failed to make proper growth. Oat bioassay of soils collected from treated rows revealed that the tree row topsoil (0 to 7.5 cm) produced less oat biomass than did deeper row soils (to 30 cm) or soils of corresponding depths from adjacent non-treated tall fescue sod alleyways. Poor growth of trees may have been related to other factors (competition from older trees, drought conditions, etc.) since herbicide residues in the upper 7.5 cm would have little effect on tree roots below this depth. After 3 yr the trees developed normally. Tree rows became heavily infested with weeds 1 yr following cessation of 23 yr of consecutive herbicide treatments.

2004 ◽  
Vol 18 (4) ◽  
pp. 1091-1095 ◽  
Author(s):  
Joseph E. Beeler ◽  
G. Neil Rhodes ◽  
Gary E. Bates ◽  
Christopher L. Main ◽  
Thomas C. Mueller

Herbicide treatments (4:1 ratio of 2,4-D amine:picloram) at 0.7 and 1.4 kg ae/ha at early postemergence (10- to 15-cm horsenettle height), midpostemergence (early flower), and late postemergence (fruit initiation) applied both early and late in the growing season provided >80% horsenettle control. Horsenettle density at season's end in all treated plots was less than 0.25 stems/m2, whereas untreated plots contained about 5 stems/m2. Horsenettle control the next spring was between 47 and 66% for all rates and application timings, and horsenettle density in treated plots was less than 3 stems/m2as opposed to about 6 stems/m2in the untreated plots. Clover drilled into the treated area the year after herbicide application was injured, indicating clover establishment the season after application of this package mixture would be difficult.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 405
Author(s):  
Miroslav Jursík ◽  
Kateřina Hamouzová ◽  
Jana Hajšlová

(1) Background: Aryloxyphenoxy-propionates and cyclohexanediones are herbicides most widely used in dicot crops worldwide. The main objective of the study was to determine the dynamics of herbicide residues in carrot, lettuce, cauliflower, and onion in order to suggest a low level of residues in harvested vegetables. (2) Methods: Small plot field trials were carried out in four vegetables in the Czech Republic. The samples of vegetables were collected continuously during the growing season. Multiresidue methods for the determination of herbicide residues by LC-MS/MS were used. Non-linear models of degradation of individual herbicides in vegetables were calculated using the exponential decay formula. Action GAP pre-harvest intervals for the 25% and 50% maximum residue limit (MRL) and 10 µg kg−1 limit (baby food) were established for all tested herbicides. (3) Results: The degradation dynamics of fluazifop in carrot, onion, and cauliflower was significantly slower compared to quizalofop and haloxyfop. The highest amount (2796 µg kg−1) of fluazifop residues was detected in cauliflower 11 days after application. No residue of propaquizafop and cycloxydim was detected in any vegetable samples. (4) Conclusions: Aryloxyphenoxy-propionate herbicide (except propaquizafop) could contaminate vegetables easily, especially vegetables with a short growing season. Vegetables treated with fluazifop are not suitable for baby food. Lettuce and cauliflower treated by quizalofop are not suitable for baby food, but in onion and carrot, quizalofop could be used. Propaquizafop and cycloxydim are prospective herbicides for non-residual (baby food) vegetable production.


1993 ◽  
Vol 23 (10) ◽  
pp. 2286-2299 ◽  
Author(s):  
R.A. Lautenschlager

Reviewed studies of the effects of forest herbicide applications on wildlife often lacked replication, pretreatment information, and (or) were conducted for only one or two growing seasons after treatment. Because of these problems, as well as the use of dissimilar sampling techniques, study conclusions have sometimes been contradictory. A review of eight studies of the effects of herbicide treatments on northern songbird populations in regenerating clearcuts indicates that total songbird populations are seldom reduced during the growing season after treatment. Densities of species that use early successional brushy, deciduous cover are sometimes reduced, while densities of species which commonly use more open areas, sometimes increase. A review of 14 studies of the effects of herbicide treatments on small mammals indicates that like songbirds, small mammal responses are species specific. Some species are unaffected, while some select and others avoid herbicide-treated areas. Only studies that use kill or removal trapping to study small mammal responses show density reductions associated with herbicide treatment. It seems that some small mammal species may be reluctant to venture into disturbed areas, although residents in those areas are apparently not affected by the disturbance. Fourteen relevant studies examined the effects of conifer release treatments on moose and deer foods and habitat use. Conifer release treatments reduce the availability of moose browse for as long as four growing seasons after treatment. The degree of reduction during the growing season after treatment varies with the herbicide and rate used. Deer use of treated areas remains unchanged or increases during the first growing season after treatment. Eight years after treating a naturally regenerated spruce–fir stand browse was three to seven times more abundant on treated than on control plots (depending on the chemical and rate used). Forage quality (nitrogen, ash, and moisture) of crop trees increased one growing season after the soil-active herbicide simazine was applied to control competition around outplanted 3-year-old balsam fir seedlings.


1992 ◽  
pp. 97-102
Author(s):  
Y. Furukawa ◽  
T. Kataoka ◽  
M. Shimomura ◽  
T. Ogata

Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 392-399 ◽  
Author(s):  
Douglas D. Buhler ◽  
Virginia L. Werling

In 1985, when weed densities were low (169 plants/m2in untreated control), imazaquin applied at 0.07 kg ai/ha early preplant controlled over 90% of all weeds before no-till planting of soybeans. In 1986 and 1987 when weed densities were higher (589 plants/m2in untreated control), addition of 1.1 kg ai/ha or more of metolachlor to imazaquin (0.07 kg/ha) before soybean planting controlled 95% or more of the grass weeds and 83% or more of the broadleaf weeds. Imazaquin plus metolachlor applied less than 1 day after soybean planting controlled less than 70% of the emerged weeds in 1986 and 1987; common lambsquarters was most tolerant. Early preplant treatments controlled more weeds throughout the growing season than treatments applied after planting. Splitting herbicide treatments among application times generally did not increase weed control compared to single applications. Early preplant applications resulted in higher soybean densities and taller soybeans 30 days after planting in 1986 and 1987 than treatments applied after planting. Soybean yields increased as weed control increased. Weed control and soybean yields were greater with early preplant treatments than paraquat plus alachlor plus metribuzin applied preemergence in 1986 and 1987. No carryover of imazaquin residue was detected through corn bioassay in the field.


2005 ◽  
Vol 85 (2) ◽  
pp. 351-360 ◽  
Author(s):  
D. B. McKenzie ◽  
Y. A. Papadopoulos ◽  
K. B. McRae ◽  
E. Butt

Kentucky bluegrass, meadow fescue, orchardgrass, tall fescue, timothy, and reed canarygrass were seeded in all possible two-grass combinations with white clover in conventional and underseeded barley treatments using a split-plot design at the Western Agriculture Centre near Pynn’s Brook, NL. The objectives were: (1) to assess dry matter yield (DMY) of two binary grass species when sown with white clover in mixtures under a system with cuttings at similar crop growth stages as rotational grazing and to assess the effect of underseeding to barley on this system; (2) to identify mixtures that enhance herbage distribution throughout the grazing season; and (3) to assess the sward dynamics over successive cropping seasons. The composition of the binary grass mixtures with white clover affected seasonal DMY, seasonal herbage distribution, and sward dynamics over the production years. Orchardgrass in mixtures decreased DMY, shifted the herbage distribution toward early season, and competed with other species. Timothy composition of the stand showed the largest decline over the 3 production years, whereas white clover declined in mixtures with bluegrass, orchardgrass, or tall fescue. Meadow fescue and reed canarygrass with white clover was the most productive mixture with excellent persistence and good yield distribution over the growing season. Orchardgrass was the least compatible species in the mixtures; it dominated first growth and contributed the least to biomass production in later years. Both bluegrass and reed canarygrass performed well in mixtures over the 3 production years; bluegrass appeared to enhance the performance of the other species during summer regrowth whereas reed canarygrass was superior in the later part of the growing season. Underseeding with barley did not affect white clover yield in any production year but detrimentally affected the yield of orchardgrass and meadow fescue in mixtures, and their seasonal distribution. Key words: Bluegrass, orchardgrass, meadow fescue, tall fescue, timothy, reed canarygrass, repeated measurements, principal component analysis, herbage DM distribution, species competition


2019 ◽  
Vol 34 (2) ◽  
pp. 164-171
Author(s):  
Gatlin Bunton ◽  
Zach Trower ◽  
Craig Roberts ◽  
Kevin W. Bradley

AbstractDuring the 2015, 2016, and 2017 growing seasons, weed and weed-free mixed tall fescue and legume forage samples were harvested from 29 pastures throughout Missouri for investigation of the nutritive value of 20 common pasture weed species throughout the season. At certain times during the growing season, many broadleaf weed species had greater nutritive values for a given quality parameter as compared with the available weed-free, mixed tall fescue and legume forage harvested from the same location. There were no significant differences in crude protein concentration between the weed-free forage and many weeds throughout the growing season. However, crude protein content of common burdock, common cocklebur, common ragweed, dandelion, horsenettle, and lanceleaf ragweed was greater than that of the corresponding forage sample at multiple collection periods. The digestible neutral detergent fiber (dNDF) content of all broadleaf weeds except lanceleaf ragweed was significantly lower than that of the weed-free forage at all collection periods. Conversely, large crabgrass had significantly greater digestible neutral detergent fiber levels than did the mixed tall fescue forage at all sampling dates. Dandelion and spiny amaranth had greater in vitro true digestibility (IVTD) content than did the forage for the entire growing season. Three perennial weeds—horsenettle, vervains, and late boneset—did not differ in IVTD levels as compared with the mixed tall fescue and legume forage at any collection date. For most summer annual weeds, the trend was toward greater digestibility earlier in the season, with a gradual decline and often lower IVTD by the late summer or early fall. The results of this study will enable producers to make more informed management decisions about the potential benefit or detriment a weed may provide to the overall nutritive value of the pasture system.


Weed Science ◽  
1970 ◽  
Vol 18 (6) ◽  
pp. 707-711 ◽  
Author(s):  
L. L. Danielson

Three tractor cultivations that severely pruned the root systems of hand-weeded plots of sweet corn [Zea mays L. var. rugosa Bonaf., Iochief] grown on a Codorus-Elkton silt loam under extreme drought conditions did not reduce the yield of marketable ears when irrigation totalling 2 acre-inches was applied during pollination and ear-filling. Pre-emergence application of 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine [atrazine] to the soil surface without cultivation reduced brace root growth and yields significantly in the year of most severe drought. These effects of atrazine were avoided when the herbicide treatments were supplemented with tractor cultivations that covered the brace root zone of the corn plants with soil.


Weed Science ◽  
1980 ◽  
Vol 28 (5) ◽  
pp. 529-534 ◽  
Author(s):  
B. A. Swisher ◽  
George Kapusta

Two yr of field research were conducted to evaluate the efficacy of BAS-9021 {2-[1-(N-allyloxyamino)butylidene]-5,5-dimethyl-4-methoxycarbonylcyclohexane-1,3-dione, Na salt}, HOE 29152 {methyl 2-[4-(4-trifluoromethylphenoxy)phenoxy]propanoate}, and mefluidideN-[2,4-dimethyl-5-[[(trifluoromethyl)sulfonyl] amino] phenyl] acetamide as selective herbicides applied postemergence to johnsongrass [Sorghum halepense(L.) Pers.]. All three herbicides afforded 85% or greater control of rhizome johnsongrass in one experiment in 1977, where repeat applications were made and ideal growing conditions prevailed. HOE 29152 also afforded excellent control with a single application made at the boot stage of johnsongrass. In a second experiment in 1977, when drought conditions prevailed, HOE 29152 was the only herbicide that afforded 70% or greater control of the johnsongrass. Both BAS-9021 and mefluidide afforded less than 60% control of johnsongrass in the single 1978 experiment, when evaluated at the end of the season. This study also was subject to drought conditions throughout the growing season.


Sign in / Sign up

Export Citation Format

Share Document