scholarly journals How to improve infectious disease prediction by integrating environmental data: an application of a novel ensemble analysis strategy to predict HFMD

2021 ◽  
Vol 149 ◽  
Author(s):  
Junwen Tao ◽  
Yue Ma ◽  
Xuefei Zhuang ◽  
Qiang Lv ◽  
Yaqiong Liu ◽  
...  

Abstract This study proposed a novel ensemble analysis strategy to improve hand, foot and mouth disease (HFMD) prediction by integrating environmental data. The approach began by establishing a vector autoregressive model (VAR). Then, a dynamic Bayesian networks (DBN) model was used for variable selection of environmental factors. Finally, a VAR model with constraints (CVAR) was established for predicting the incidence of HFMD in Chengdu city from 2011 to 2017. DBN showed that temperature was related to HFMD at lags 1 and 2. Humidity, wind speed, sunshine, PM10, SO2 and NO2 were related to HFMD at lag 2. Compared with the autoregressive integrated moving average model with external variables (ARIMAX), the CVAR model had a higher coefficient of determination (R2, average difference: + 2.11%; t = 6.2051, P = 0.0003 < 0.05), a lower root mean-squared error (−24.88%; t = −5.2898, P = 0.0007 < 0.05) and a lower mean absolute percentage error (−16.69%; t = −4.3647, P = 0.0024 < 0.05). The accuracy of predicting the time-series shape was 88.16% for the CVAR model and 86.41% for ARIMAX. The CVAR model performed better in terms of variable selection, model interpretation and prediction. Therefore, it could be used by health authorities to identify potential HFMD outbreaks and develop disease control measures.

2019 ◽  
Vol 6 (1) ◽  
pp. 41
Author(s):  
Jaka Darma Jaya

Perkembangan produksi daging sapi di Indonesia selama 30 tahun terakhir secara umum cenderung meningkat. Kebutuhan daging sapi di Indonesia masih belum bisa dicukupi oleh supply domestik, sehingga diperlukan impor daging sapi dari luar negeri.  Diperlukan kajian tentang proyeksi ketersediaan populasi sapi potong di masa mendatang agar diambil kebijakan yang tepat dalam menjaga stabilitas dan keterpenuhan supply daging nasional.  Penelitian ini bertujuan untuk melakukan peramalan jumlah populasi sapi potong menggunakan 3 (tiga) metode peramalan yaitu metode moving average, exponential smoothing dan trend analysis.  Hasil peramalan ini selanjutnya diukur akurasinya menggunakan MAD (Mean Absolud Deviation), MSE (Mean Squared Error) dan MAPE (Mean Absolute Percentage Error).  Proyeksi populasi sapi potong pada tahun 2019 (periode berikutnya) menggunakan 3 metode peramalan adalah: 195.100 (moving average); 218.225 (exponential smooting) dan 262.899 (trend analysis). Pengukuran akurasi menggunakan MAD, MSE dan MAPE menunjukkan bahwa metode peramalan jumlah populasi sapi potong yang paling akurat adalah peramalan menggunakan metode polynomial trend analysis (MAD 14.716,12;  MSE 327.282.084,17; dan MAPE 0,09) karena memiliki tingkat kesalahan yang lebih kecil dibandingkan hasil peramalan menggunakan metode moving average dan exponential smoothing.


2021 ◽  
Vol 36 (2spl) ◽  
pp. 708-714
Author(s):  
Sayed Mohibul HOSSEN ◽  
◽  
Mohd Tahir ISMAIL ◽  
Mosab I. TABASH ◽  
Ahmed ABOUSAMAK ◽  
...  

Forecasting of potential tourists’ appearance could assume a critical role in the tourism industry, arranging at all levels in both the private and public sectors. In this study our aim to build an econometric model to forecast worldwide visitor streams to Bangladesh. For this purpose, the present investigation focuses on univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) modeling. Model choice criteria were Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Mean Squared Error (RMSE). As per descriptive statistics, the mean appearances were 207012 and will be 656522 (application) every year. Mean Absolute Deviation and Mean Squared Deviation likewise concurred with MAPE, MAE, and MSE. The result reveals that for sustainable development the SARIMA model is the reasonable model for forecasting universal visitor appearances in Bangladesh.


Author(s):  
A. U. Noman ◽  
S. Majumder ◽  
M. F. Imam ◽  
M. J. Hossain ◽  
F. Elahi ◽  
...  

Export plays an important role in promoting economic growth and development. The study is conducted to make an efficient forecasting of tea export from Bangladesh for mitigating the risk of export in the world market. Forecasting has been done by fitting Box-Jenkins type autoregressive integrated moving average (ARIMA) model. The best ARIMA model is selected by comparing the criteria- coefficient of determination (R2), root mean square error (RMSE), mean absolute percentage error (MAPE), mean absolute error (MAE) and Bayesian information criteria (BIC). Among the Box-Jenkins ARIMA type models for tea export the ARIMA (1,1,3) model is the most appropriate one for forecasting and the forecast values in thousand kilogram for the year 2017-18, 2018-19, 2019-20, 2020-21 and 2021-22, are 1096.48, 812.83, 1122.02, 776.25 and 794.33 with upper limit 1819.70, 1348.96, 1862.09, 1288.25, 1318.26 and lower limit 660.69, 489.78, 676.08, 467.74, 478.63, respectively. So, the result of this model may be helpful for the policymaker to make an export development plan for the country.


Author(s):  
Mohammed A. A. Al-qaness ◽  
Ahmed A. Ewees ◽  
Hong Fan ◽  
Laith Abualigah ◽  
Mohamed Abd Elaziz

The current pandemic of the new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or COVID-19, has received wide attention by scholars and researchers. The vast increase in infected people is a significant challenge for each country and the international community in general. The prediction and forecasting of the number of infected people (so-called confirmed cases) is a critical issue that helps in understanding the fast spread of COVID-19. Therefore, in this article, we present an improved version of the ANFIS (adaptive neuro-fuzzy inference system) model to forecast the number of infected people in four countries, Italy, Iran, Korea, and the USA. The improved version of ANFIS is based on a new nature-inspired optimizer, called the marine predators algorithm (MPA). The MPA is utilized to optimize the ANFIS parameters, enhancing its forecasting performance. Official datasets of the four countries are used to evaluate the proposed MPA-ANFIS. Moreover, we compare MPA-ANFIS to several previous methods to evaluate its forecasting performance. Overall, the outcomes show that MPA-ANFIS outperforms all compared methods in almost all performance measures, such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), and Coefficient of Determination( R 2 ). For instance, according to the results of the testing set, the R 2 of the proposed model is 96.48%, 98.59%, 98.74%, and 95.95% for Korea, Italy, Iran, and the USA, respectively. More so, the MAE is 60.31, 3951.94, 217.27, and 12,979, for Korea, Italy, Iran, and the USA, respectively.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1983
Author(s):  
Mahmood Ahmad ◽  
Ji-Lei Hu ◽  
Feezan Ahmad ◽  
Xiao-Wei Tang ◽  
Maaz Amjad ◽  
...  

Supervised learning algorithms are a recent trend for the prediction of mechanical properties of concrete. This paper presents AdaBoost, random forest (RF), and decision tree (DT) models for predicting the compressive strength of concrete at high temperature, based on the experimental data of 207 tests. The cement content, water, fine and coarse aggregates, silica fume, nano silica, fly ash, super plasticizer, and temperature were used as inputs for the models’ development. The performance of the AdaBoost, RF, and DT models are assessed using statistical indices, including the coefficient of determination (R2), root mean squared error-observations standard deviation ratio (RSR), mean absolute percentage error, and relative root mean square error. The applications of the above-mentioned approach for predicting the compressive strength of concrete at high temperature are compared with each other, and also to the artificial neural network and adaptive neuro-fuzzy inference system models described in the literature, to demonstrate the suitability of using the supervised learning methods for modeling to predict the compressive strength at high temperature. The results indicated a strong correlation between experimental and predicted values, with R2 above 0.9 and RSR lower than 0.5 during the learning and testing phases for the AdaBoost model. Moreover, the cement content in the mix was revealed as the most sensitive parameter by sensitivity analysis.


Author(s):  
Nabeel H. Al-Saati ◽  
Isam I. Omran ◽  
Alaa Ali Salman ◽  
Zainab Al-Saati ◽  
Khalid S. Hashim

Abstract Autoregressive Integrated Moving Average (ARIMA) Box-Jenkins models combine the autoregressive and moving average models to a stationary time series after the appropriate transformation, while the nonlinear autoregressive (N.A.R.) or the autoregressive neural network (ARNN) models are of the kind of multi-layer perceptron (M.L.P.), which compose an input layer, hidden layer and an output layer. Monthly streamflow at the downstream of the Euphrates River (Hindiya Barrage) /Iraq for the period January 2000 to December 2019 was modeled utilizing ARIMA and N.A.R. time series models. The predicted Box-Jenkins model was ARIMA (1,1,0) (0,1,1), while the predicted artificial neural network (N.A.R.) model was (M.L.P. 1-3-1). The results of the study indicate that the traditional Box-Jenkins model was more accurate than the N.A.R. model in modeling the monthly streamflow of the studied case. Performing a one-step-ahead forecast during the year 2019, the forecast accuracy between the forecasted and recorded monthly streamflow for both models was as follows: the Box-Jenkins model gave root mean squared error (RMSE = 48.7) and the coefficient of determination R2 = 0.801), while the (NAR) model gave (RMSE = 93.4) and R2 = 0.269). Future projection of the monthly stream flow through the year 2025, utilizing the Box-Jenkins model, indicated the existence of long-term periodicity.


Author(s):  
Mehdi Azarafza ◽  
Mohammad Azarafza ◽  
Jafar Tanha

Since December 2019 coronavirus disease (COVID-19) is outbreak from China and infected more than 4,666,000 people and caused thousands of deaths. Unfortunately, the infection numbers and deaths are still increasing rapidly which has put the world on the catastrophic abyss edge. Application of artificial intelligence and spatiotemporal distribution techniques can play a key role to infection forecasting in national and province levels in many countries. As methodology, the presented study employs long short-term memory-based deep for time series forecasting, the confirmed cases in both national and province levels, in Iran. The data were collected from February 19, to March 22, 2020 in provincial level and from February 19, to May 13, 2020 in national level by nationally recognised sources. For justification, we use the recurrent neural network, seasonal autoregressive integrated moving average, Holt winter's exponential smoothing, and moving averages approaches. Furthermore, the mean absolute error, mean squared error, and mean absolute percentage error metrics are used as evaluation factors with associate the trend analysis. The results of our experiments show that the LSTM model is performed better than the other methods on the collected COVID-19 dataset in Iran


2021 ◽  
Vol 6 (9) ◽  
pp. 382-390
Author(s):  
Nor Farah Hanim Binti Mohamad Norizan ◽  
Zahayu Binti Md Yusof

Natural rubber (NR) has recently become one of Malaysia's most important economic sectors. Despite, the price of Standard Malaysia Rubber 20 changes frequently. That is why it is important to develop a NR price forecasting model. Because there was a significant time lag between making output decisions and the actual output of the commodity in the market. The aim of this study is to determine the time series pattern for natural rubber price in Malaysia within 1995 until 2020 and to forecast the natural rubber price in Malaysia for 10 years ahead. The data used is from year 1995 until 2020 that were obtained from Malaysian Rubber Board (MRB). This study also used univariate forecasting like Naïve with Trend, Double Exponential Smoothing, Holt’s Winter and Autoregressive Integrated Moving Average (ARIMA). Then, the measurement error is used to determine the best method to forecast the future data. The measurement error that used in this study are Mean Absolute Error, Mean Squared Error, Root Mean Square Error, Mean Absolute Percentage Error and The Theil Inequality Coefficient. Result: The natural rubber price in Malaysia showed a trend pattern. Then, ARIMA is used to determine the forecast of natural rubber price for next 10 years since it has the lowest measurement error. Conclusion: There are volatility in the price of natural rubber in Malaysia over the next 10 years.


2021 ◽  
Author(s):  
Shams Kalam ◽  
Mohammad Rasheed Khan ◽  
Rizwan Ahmed Khan

Abstract This investigation presents a powerful predictive model to determine crude oil formation volume factor (FVF) using state-of-the-art artificial intelligence (AI) techniques. FVF is a vital pressure-volume-temperature (PVT) parameter used to characterize hydrocarbon systems and is pivotal to reserves calculation and reservoir engineering studies. Ideally, FVF is measured at the laboratory scale; however, prognostic tools to evaluate this parameter can optimize time and cost estimates. The database utilized in this study is obtained from open literature and covers statistics of crude oils of the Middle East region. Multiple AI algorithms are considered, including Artificial Neural Networks (ANN) and Artificial Neural Fuzzy Inference Systems (ANFIS). Models are developed utilizing an optimization strategy for various parameters/hyper-parameters of the respective algorithms. Unique permutations and combinations for the number of perceptron and their resident layers is investigated to reach a solution that provides the most optimum output. These intelligent models are produced as a function of the parameters intrinsically affecting FVF; reservoir temperature, solution GOR, gas specific gravity, bubble point pressure, and crude oil API gravity. Comparative analysis of developed AI models is performed using visualization/statistical analysis, and the best model is pointed out. Finally, the mathematical equation extraction to determine FVF is accomplished with the respective weights and bias for the model presented. Graphical analysis is used to evaluate the performance of developed AI models. The results of scatter plots showed most of the points are lying on the 45 degree line. Moreover, during this study, an error metric is developed comprising of multiple analysis parameters; Average absolute percentage error (AAPE), Root Mean Squared Error (RMSE), coefficient of determination (R2). All models investigated are tested on an unseen dataset to prevent a biased model's development. Performance of the established AI models is gauged based on this error metric, demonstrating that ANN outperforms ANFIS with error within 1% of the measured PVT values. A computationally derived intelligent model provides the strongest predictive capabilities as it maps complex non-linear interactions between various input parameters leading to FVF.


2021 ◽  
Author(s):  
Mohammad Rasheed Khan ◽  
Zeeshan Tariq ◽  
Mohamed Mahmoud

Abstract Photoelectric factor (PEF) is one of functional parameters of a hydrocarbon reservoir that could provide invaluable data for reservoir characterization. Well logs are critical to formation evaluation processes; however, they are not always readily available due to unfeasible logging conditions. In addition, with call for efficiency in hydrocarbon E&P business, it has become imperative to optimize logging programs to acquire maximum data with minimal cost impact. As a result, the present study proposes an improved strategy for generating synthetic log by making a quantitative formulation between conventional well log data, rock mineralogical content and PEF. 230 data points were utilized to implement the machine learning (ML) methodology which is initiated by implementing a statistical analysis scheme. The input logs that are used for architecture establishment include the density and sonic logs. Moreover, rock mineralogical content (carbonate, quartz, clay) has been incorporated for model development which is strongly correlated to the PEF. At the next stage of this study, architecture of artificial neural networks (ANN) was developed and optimized to predict the PEF from conventional well log data. A sub-set of data points was used for ML model construction and another unseen set was employed to assess the model performance. Furthermore, a comprehensive error metrics analysis is used to evaluate performance of the proposed model. The synthetic PEF log generated using the developed ANN correlation is compared with the actual well log data available and demonstrate an average absolute percentage error less than 0.38. In addition, a comprehensive error metric analysis is presented which depicts coefficient of determination more than 0.99 and root mean squared error of only 0.003. The numerical analysis of the error metric point towards the robustness of the ANN model and capability to link mineralogical content with the PEF.


Sign in / Sign up

Export Citation Format

Share Document