Temperature effects on spectral properties of red and green rods in toad retina

2002 ◽  
Vol 19 (6) ◽  
pp. 781-792 ◽  
Author(s):  
PETRI ALA-LAURILA ◽  
PIA SAARINEN ◽  
RAULI ALBERT ◽  
ARI KOSKELAINEN ◽  
KRISTIAN DONNER

Temperature effects on spectral properties of the two types of rod photoreceptors in toad retina, “red” and “green” rods, were studied in the range 0–38°C. Absorbance spectra of the visual pigments were recorded by single-cell microspectrophotometry (MSP) and spectral sensitivities of red rods were measured by electroretinogram (ERG) recording across the isolated retina. The red-rod visual pigment is a usual rhodopsin (λmax = 503.6 nm and 502.3 nm at room temperature (21°C) in, respectively, Bufo marinus and Bufo bufo), that of green rods (λmax = 432.6 nm in Bufo marinus) belongs to the “blue” cone pigment family. In red rods, λmax depended inversely and monotonically on temperature, shifting by −2.3 nm when temperature was raised from 0°C to 38°C. Green-rod λmax showed no measurable dependence on temperature. In red rods, warming caused a relative increase of sensitivity in the long-wavelength range. This effect can be used for estimating the energy needed for photoexcitation, giving Ea = 44.3 ± 0.6 kcal/mol for Bufo marinus rhodopsin and 48.8 ± 0.5 kcal/mol for Bufo bufo rhodopsin. The values are significantly different (P < 0.001), although the two rhodopsins have very similar absorption spectra and thermal isomerization rates. Our recording techniques did not allow measurement of the corresponding effect at long wavelengths in green rods. Although spectral effects of temperature changes in the physiological range are small and of little significance for visual function, they reveal information about the energy states and different spectral tuning mechanisms of the visual pigments.

2003 ◽  
Vol 20 (4) ◽  
pp. 411-419 ◽  
Author(s):  
PETRI ALA-LAURILA ◽  
RAULI-JAN ALBERT ◽  
PIA SAARINEN ◽  
ARI KOSKELAINEN ◽  
KRISTIAN DONNER

Effects of temperature on the spectral properties of visual pigments were measured in the physiological range (5–28°C) in photoreceptor cells of bullfrog (Rana catesbeiana) and crucian carp (Carassius carassius). Absorbance spectra recorded by microspectrophotometry (MSP) in single cells and sensitivity spectra recorded by electroretinography (ERG) across the isolated retina were combined to yield accurate composite spectra fromca. 400 nm to 800 nm. The four photoreceptor types selected for study allowed three comparisons illuminating the properties of pigments using the dehydroretinal (A2) chromophore: (1) the two members of an A1/A2 pigment pair with the same opsin (porphyropsinvs.rhodopsin in bullfrog “red” rods); (2) two A2 pigments with similar spectra (porphyropsin rods of bullfrog and crucian carp); and (3) two A2 pigments with different spectra (rodsvs.long-wavelength-sensitive (L-) cones of crucian carp). Qualitatively, the temperature effects on A2 pigments were similar to those described previously for the A1 pigment of toad “red” rods. Warming caused an increase in relative sensitivities at very long wavelengths but additionally a small shift of λmaxtoward shorter wavelengths. The former effect was used for estimating the minimum energy required for photoactivation (Ea) of the pigment. Bullfrog rod opsin with A2 chromophore hadEa= 44.2 ± 0.9 kcal/mol, significantly lower (one-tailedP< 0.05) than the valueEa= 46.5 ± 0.8 kcal/mol for the same opsin coupled to A1. The A2 rod pigment of crucian carp hadEa= 42.3 ± 0.6 kcal/mol, which is significantly higher (one-tailedP< 0.01) than that of the L-cones in the same retina (Ea= 38.3 ± 0.4 kcal/mol), whereas the difference compared with the bullfrog A2 rod pigment is not statistically significant (two-tailedP= 0.13). No strict connection between λmaxandEaappears to exist among A2 pigments any more than among A1 pigments. Still, the A1 → A2 chromophore substitution in bullfrog opsin causes three changes correlated as originally hypothesized by Barlow (1957): a red-shift of λmax, a decrease inEa, and an increase in thermal noise.


1965 ◽  
Vol 18 (1) ◽  
pp. 53 ◽  
Author(s):  
KT Glasziou ◽  
TA Bull ◽  
MD Hatch ◽  
PC Whiteman

Independent and interaction effects of day and night temperature, photo-period duration, and diurnal thermoperiodicity were studied on sugar-cane grown under controlled environments. During the first 3 months of growth, day and night temperature effects were mainly additive, but at 6 months the interaction effects of all variables were numerous and complex. Many of the interaction effects could be attributed to increased responses to constant-temperature regimes with a 12-hr photoperiod. No evidence for thermoperiodicity requirements was found.


1993 ◽  
Vol 58 (10) ◽  
pp. 2337-2348 ◽  
Author(s):  
Ivan Kmínek ◽  
Stanislav Nešpůrek ◽  
Eduard Brynda ◽  
Jiří Pfleger ◽  
Věra Cimrová ◽  
...  

The attachment of long wavelength absorbing π-conjugated chromophores to poly(methyl-phenylsilylene) (PMPSi) via reactions of its formylated derivative is described. Some of the obtained polymers exhibit improved photostability in comparison with the parent polymer. Their spectral properties and photoconductivity are discussed. Ultrathin layers and multilayers were prepared from polar derivatives of PMPSi by the Langmuir-Blodgett technique and their photoconductive behaviour was studied.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Polina Drozdova ◽  
Alena Kizenko ◽  
Alexandra Saranchina ◽  
Anton Gurkov ◽  
Maria Firulyova ◽  
...  

Abstract Background Vision is a crucial sense for the evolutionary success of many animal groups. Here we explore the diversity of visual pigments (opsins) in the transcriptomes of amphipods (Crustacea: Amphipoda) and conclude that it is restricted to middle (MWS) and long wavelength-sensitive (LWS) opsins in the overwhelming majority of examined species. Results We evidenced (i) parallel loss of MWS opsin expression in multiple species (including two independently evolved lineages from the deep and ancient Lake Baikal) and (ii) LWS opsin amplification (up to five transcripts) in both Baikal lineages. The number of LWS opsins negatively correlated with habitat depth in Baikal amphipods. Some LWS opsins in Baikal amphipods contained MWS-like substitutions, suggesting that they might have undergone spectral tuning. Conclusions This repeating two-step evolutionary scenario suggests common triggers, possibly the lack of light during the periods when Baikal was permanently covered with thick ice and its subsequent melting. Overall, this observation demonstrates the possibility of revealing climate history by following the evolutionary changes in protein families.


1975 ◽  
Vol 53 (6) ◽  
pp. 679-685 ◽  
Author(s):  
J. B. Holter ◽  
W. E. Urban Jr. ◽  
H. H. Hayes ◽  
H. Silver ◽  
H. R. Skutt

Six adult white-tailed deer (Odocoileus virginianus borealis) were exposed to 165 periods of 12 consecutive hours of controlled constant ambient temperature in an indirect respiration calorimeter. Temperatures among periods varied from 38 to 0 (summer) or to −20C (fall, winter, spring). Traits measured were energy expenditure (metabolic rate), proportion of time spent standing, heart rate, and body temperature, the latter two using telemetry. The deer used body posture extensively as a means of maintaining body energy equilibrium. Energy expenditure was increased at low ambient temperature to combat cold and to maintain relatively constant body temperature. Changes in heart rate paralleled changes in energy expenditure. In a limited number of comparisons, slight wind chill was combatted through behavioral means with no effect on energy expenditure. The reaction of deer to varying ambient temperatures was not the same in all seasons of the year.


2007 ◽  
Vol 90 (9) ◽  
pp. 093104 ◽  
Author(s):  
A. Al Salman ◽  
A. Tortschanoff ◽  
M. B. Mohamed ◽  
D. Tonti ◽  
F. van Mourik ◽  
...  

1998 ◽  
Vol 15 (4) ◽  
pp. 643-651 ◽  
Author(s):  
JEFFRY I. FASICK ◽  
THOMAS W. CRONIN ◽  
DAVID M. HUNT ◽  
PHYLLIS R. ROBINSON

To assess the dolphin's capacity for color vision and determine the absorption maxima of the dolphin visual pigments, we have cloned and expressed the dolphin opsin genes. On the basis of sequence homology with other mammalian opsins, a dolphin rod and long-wavelength sensitive (LWS) cone opsin cDNAs were identified. Both dolphin opsin cDNAs were expressed in mammalian COS-7 cells. The resulting proteins were reconstituted with the chromophore 11-cis-retinal resulting in functional pigments with absorption maxima (λmax) of 488 and 524 nm for the rod and cone pigments respectively. These λmax values are considerably blue shifted compared to those of many terrestrial mammals. Although the dolphin possesses a gene homologous to other mammalian short-wavelength sensitive (SWS) opsins, it is not expressed in vivo and has accumulated a number of deletions, including a frame-shift mutation at nucleotide position 31. The dolphin therefore lacks the common dichromatic form of color vision typical of most terrestrial mammals.


2007 ◽  
Vol 85 (4) ◽  
pp. 584-587 ◽  
Author(s):  
A.J. Sillman ◽  
E.K. Ong ◽  
E.R. Loew

Lake sturgeon ( Acipenser fulvescens Rafinesque, 1817) photoreceptors were studied with scanning electron microscopy and microspectrophotometry. The retina contains both rods and cones, with cones estimated composing about 30% of the photoreceptor population. Only large single cones were identified and they are similar to those found in other species of the order Acipenseriformes. The rods are large, with long, broad outer segments, and are similar to the dominant rod found in other sturgeons and the North American paddlefish ( Polyodon spathula (Walbaum, 1792)). Mean (SD) rod packing density at 22 624 ± 3 509 rods/mm2 is low compared with those of other animals that function primarily in dim light. The visual pigment of the rods has a mean (SD) peak absorbance (λmax) at 541 ± 2 nm. Three different cone populations were identified: a long wavelength sensitive cone containing a visual pigment with λmax at 619 ± 3 nm; middle wavelength sensitive cone with λmax at 538 ± 1 nm; and short wavelength sensitive cone with λmax at 448 ± 1 nm. All the visual pigments are based on the vitamin A2 chromophore.


2005 ◽  
Vol 71 (10) ◽  
pp. 6453-6457 ◽  
Author(s):  
Wen-Tso Liu ◽  
Jer-Horng Wu ◽  
Emily Sze-Ying Li ◽  
Ezrein Shah Selamat

ABSTRACT The effects of temperature, salt concentration, and formamide concentration on the emission characteristics of commonly used fluorescent labels were evaluated on DNA microchips. The emission intensities of different fluorophores without hybridization were observed to vary, each to a different extent, to mainly temperature changes. Rhodamine red, TAMRA (tetramethylrhodamine), and dyes from the carbocyanide group exhibited the largest variations, and Texas Red and Oregon Green exhibited the smallest variations. This temperature dependency was shown to affect results obtained during melting curve analysis in DNA microarray studies. To minimize the bias associated with the temperature-dependent emission of different fluorescent labels, a normalization step was proposed.


Sign in / Sign up

Export Citation Format

Share Document