Narrow and wide field amacrine cells fire action potentials in response to depolarization and light stimulation

2007 ◽  
Vol 24 (2) ◽  
pp. 197-206 ◽  
Author(s):  
STEPHANIE J. HEFLIN ◽  
PAUL B. COOK

Action potentials in amacrine cells are important for lateral propagation of signals across the inner retina, but it is unclear how many subclasses of amacrine cells contain voltage-gated sodium channels or can fire action potentials. This study investigated the ability of amacrine cells with narrow (< 200 μm) and wide (> 200 μm) dendritic fields to fire action potentials in response to depolarizing current injections and light stimulation. The pattern of action potentials evoked by current injections revealed two distinct classes of amacrine cells; those that responded with a single action potential (single-spiking cells) and those that responded with repetitive action potentials (repetitive-spiking cells). Repetitive-spiking cells differed from single-spiking cells in several regards: Repetitive-spiking cells were more often wide field cells, while single-spiking cells were more often narrow field cells. Repetitive-spiking cells had larger action potential amplitudes, larger peak voltage-gated NaV currents lower action potential thresholds, and needed less current to induce action potentials. However, there was no difference in the input resistance, holding current or time constant of these two classes of cells. The intrinsic capacity to fire action potentials was mirrored in responses to light stimulation; single-spiking amacrine cells infrequently fired action potentials to light steps, while repetitive-spiking amacrine cells frequently fired numerous action potentials. These results indicate that there are two physiologically distinct classes of amacrine cells based on the intrinsic capacity to fire action potentials.

2005 ◽  
Vol 94 (6) ◽  
pp. 4430-4440 ◽  
Author(s):  
Sofija Andjelic ◽  
Vincent Torre

Calcium dynamics in leech neurons were studied using a fast CCD camera. Fluorescence changes (Δ F/ F) of the membrane impermeable calcium indicator Oregon Green were measured. The dye was pressure injected into the soma of neurons under investigation. Δ F/ F caused by a single action potential (AP) in mechanosensory neurons had approximately the same amplitude and time course in the soma and in distal processes. By contrast, in other neurons such as the Anterior Pagoda neuron, the Annulus Erector motoneuron, the L motoneuron, and other motoneurons, APs evoked by passing depolarizing current in the soma produced much larger fluorescence changes in distal processes than in the soma. When APs were evoked by stimulating one distal axon through the root, Δ F/ F was large in all distal processes but very small in the soma. Our results show a clear compartmentalization of calcium dynamics in most leech neurons in which the soma does not give propagating action potentials. In such cells, the soma, while not excitable, can affect information processing by modulating the sites of origin and conduction of AP propagation in distal excitable processes.


1991 ◽  
Vol 66 (3) ◽  
pp. 744-761 ◽  
Author(s):  
S. M. Johnson ◽  
P. A. Getting

1. The purpose of this study was to determine the electrophysiological properties of neurons within the region of the nucleus ambiguus (NA), an area that contains the ventral respiratory group. By the use of an in vitro brain stem slice preparation, intracellular recordings from neurons in this region (to be referred to as NA neurons, n = 235) revealed the following properties: postinhibitory rebound (PIR), delayed excitation (DE), adaptation, and posttetanic hyperpolarization (PTH). NA neurons were separated into three groups on the basis of their expression of PIR and DE: PIR cells (58%), DE cells (31%), and Non cells (10%). Non cells expressed neither PIR nor DE and no cells expressed both PIR and DE. 2. PIR was a transient depolarization that produced a single action potential or a burst of action potentials when the cell was released from hyperpolarization. In the presence of tetrodotoxin (TTX), the maximum magnitude of PIR was 7-12 mV. Under voltage-clamp conditions, hyperpolarizing voltage steps elicited a small inward current during the hyperpolarization and a small inward tail current on release from hyperpolarization. These currents, which mediate PIR, were most likely due to Q-current because they were blocked with extracellular cesium and were insensitive to barium. 3. DE was a delay in the onset of action potential firing when cells were hyperpolarized before application of depolarizing current. When cells were hyperpolarized to -90 mV for greater than or equal to 300 ms, maximum delays ranged from 150 to 450 ms. The transient outward current underlying DE was presumed to be A-current because of the current's activation and inactivation characteristics and its elimination by 4-aminopyridine (4-AP). 4. Adaptation was examined by applying depolarizing current for 2.0 s and measuring the frequency of evoked action potentials. Although there was a large degree of variability in the degree of adaptation, PIR cells tended to express less adaptation than DE and Non cells. Nearly three-fourths of all NA neurons adapted rapidly (i.e., 50% adaptation in less than 200 ms), but PIR cells tended to adapt faster than DE and Non cells. PTH after a train of action potentials was relatively rare and occurred more often in DE cells (43%) and Non cells (33%) than in PIR cells (13%). PTH had a magnitude of up to 18 mV and time constants that reflected the presence of one (1.7 +/- 1.4 s, mean +/- SD) or two components (0.28 +/- 0.13 and 4.1 +/- 2.2 s).(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 86 (2) ◽  
pp. 629-640 ◽  
Author(s):  
Muthukrishnan Renganathan ◽  
Theodore R. Cummins ◽  
Stephen G. Waxman

C-type dorsal root ganglion (DRG) neurons can generate tetrodotoxin-resistant (TTX-R) sodium-dependent action potentials. However, multiple sodium channels are expressed in these neurons, and the molecular identity of the TTX-R sodium channels that contribute to action potential production in these neurons has not been established. In this study, we used current-clamp recordings to compare action potential electrogenesis in Nav1.8 (+/+) and (−/−) small DRG neurons maintained for 2–8 h in vitro to examine the role of sodium channel Nav1.8 (α-SNS) in action potential electrogenesis. Although there was no significant difference in resting membrane potential, input resistance, current threshold, or voltage threshold in Nav1.8 (+/+) and (−/−) DRG neurons, there were significant differences in action potential electrogenesis. Most Nav1.8 (+/+) neurons generate all-or-none action potentials, whereas most of Nav1.8 (−/−) neurons produce smaller graded responses. The peak of the response was significantly reduced in Nav1.8 (−/−) neurons [31.5 ± 2.2 (SE) mV] compared with Nav1.8 (+/+) neurons (55.0 ± 4.3 mV). The maximum rise slope was 84.7 ± 11.2 mV/ms in Nav1.8 (+/+) neurons, significantly faster than in Nav1.8 (−/−) neurons where it was 47.2 ± 1.3 mV/ms. Calculations based on the action potential overshoot in Nav1.8 (+/+) and (−/−) neurons, following blockade of Ca2+ currents, indicate that Nav1.8 contributes a substantial fraction (80–90%) of the inward membrane current that flows during the rising phase of the action potential. We found that fast TTX-sensitive Na+ channels can produce all-or-none action potentials in some Nav1.8 (−/−) neurons but, presumably as a result of steady-state inactivation of these channels, electrogenesis in Nav1.8 (−/−) neurons is more sensitive to membrane depolarization than in Nav1.8 (+/+) neurons, and, in the absence of Nav1.8, is attenuated with even modest depolarization. These observations indicate that Nav1.8 contributes substantially to action potential electrogenesis in C-type DRG neurons.


Author(s):  
Leonard K. Kaczmarek

The intrinsic electrical properties of neurons are extremely varied. For example, the width of action potentials in different neurons varies by more than an order of magnitude. In response to prolonged stimulation, some neurons generate repeated action potential hundreds of times a second, while others fire only a single action potential or adapt very rapidly. These differences result from the expression of different types of ion channels in the plasma membrane. The dominant channels that shape neuronal firing patterns are those that are selective for sodium, calcium, and potassium ions. This chapter provides a brief overview of the biophysical properties of each of these classes of channel, their role in shaping the electrical personality of a neuron, and how interactions of these channels with cytoplasmic factors shape the overall cell biology of a neuron.


1993 ◽  
Vol 70 (5) ◽  
pp. 1874-1884 ◽  
Author(s):  
K. Morita ◽  
G. David ◽  
J. N. Barrett ◽  
E. F. Barrett

1. The hyperpolarization that follows tetanic stimulation was recorded intra-axonally from the internodal region of intramuscular myelinated motor axons. 2. The peak amplitude of the posttetanic hyperpolarization (PTH) that followed stimulation at 20-100 Hz for < or = 35 s increased with increasing train duration, reaching a maximum of 22 mV. PTH decayed over a time course that increased from tens to hundreds of seconds with increasing train duration. For a given frequency of stimulation the time integral of PTH was proportional to the number of stimuli in the train, averaging 3-4 mV.s per action potential. 3. Ouabain (0.1-1 mM) and cyanide (1 mM) depolarized the resting potential and abolished PTH. Tetanic stimulation in ouabain was followed by a slowly decaying depolarization (probably due to extra-axonal K+ accumulation) whose magnitude and duration increased as the duration of the train increased. 4. Axonal input resistance showed no consistent change during PTH in normal solution but increased during PTH in the presence of 3 mM Cs+ (which blocks axonal inward rectifier currents). 5. PTH was abolished when bath Na+ was replaced by Li+ or choline. PTH persisted after removal of bath Ca2+ and addition of 2 mM Mn2+. 6. Removal of bath K+ abolished the PTH recorded after brief stimulus trains and greatly reduced the duration of PTH recorded after longer stimulus trains. 7. A brief application of 10 mM K+, which normally depolarizes axons, produced a ouabain-sensitive hyperpolarization in axons bathed in K(+)-free solution. 8. These observations suggest that in these myelinated axons PTH is produced mainly by activation of an electrogenic Na(+)-K(+)-ATPase, rather than by changes in K+ permeability or transmembrane [K+] gradients. This conclusion is supported by calculations showing agreement between estimates of Na+ efflux/impulse based on PTH measurements and estimates of Na+ influx/impulse based on nodal voltage-clamp measurements. Pump activity also appears to contribute to the resting potential. 9. The stimulus intensity required to initiate a propagating action potential increased during PTH but decreased during the posttetanic depolarization recorded in ouabain. Thus changes in axonal excitability after tetanic stimulation correlate with changes in the posttetanic membrane potential. 10. Action potentials that propagated during PTH had a larger peak amplitude and were followed by a larger and longer depolarizing afterpotential than action potentials elicited at the resting potential. This enhancement of the depolarizing afterpotential is consistent with previous reports of an increased superexcitable period after action potentials evoked during PTH.


2002 ◽  
Vol 87 (6) ◽  
pp. 2858-2866 ◽  
Author(s):  
Yoshitake Yamada ◽  
Amane Koizumi ◽  
Eisuke Iwasaki ◽  
Shu-Ichi Watanabe ◽  
Akimichi Kaneko

Retinal amacrine cells are interneurons that make lateral and vertical connections in the inner plexiform layer of the retina. Amacrine cells do not possess a long axon, and this morphological feature is the origin of their naming. Their dendrites function as both presynaptic and postsynaptic sites. Half of all amacrine cells are GABAergic inhibitory neurons that mediate lateral inhibition, and their light-evoked response consists of graded voltage changes and regenerative action potentials. There is evidence that the amount of neurotransmitter release from presynaptic sites is increased by spike propagation into the dendrite. Thus understanding of how action potentials propagate in dendrites is important to elucidating the extent and strength of lateral inhibition. In the present study, we used the dual whole cell patch-clamp technique on the soma and the dendrite of cultured rat amacrine cells and directly demonstrated that the action potentials propagate into the dendrites. The action potential in the dendrite was TTX sensitive and was affected by the local membrane potential of the dendrite. Propagation of the action potential was suppressed by local application of GABA to the dendrite. Dual dendrite whole cell patch-clamp recordings showed that GABA suppresses the propagation of action potentials in one dendrite of an amacrine cell, while the action potentials propagate in the other dendrites. It is likely that the action potentials in the dendrites are susceptible to various external factors resulting in the nonuniform propagation of the action potential from the soma of an amacrine cell.


1997 ◽  
Vol 78 (6) ◽  
pp. 3484-3488 ◽  
Author(s):  
Huanmian Chen ◽  
Nevin A. Lambert

Chen, Huanmian and Nevin A. Lambert. Inhibition of dendritic calcium influx by activation of G-protein–coupled receptors in the hippocampus. J. Neurophysiol. 78: 3484–3488, 1997. Gi proteins inhibit voltage-gated calcium channels and activate inwardly rectifying K+ channels in hippocampal pyramidal neurons. The effect of activation of G-protein–coupled receptors on action potential-evoked calcium influx was examined in pyramidal neuron dendrites with optical and extracellular voltage recording. We tested the hypotheses that 1) activation of these receptors would inhibit calcium channels in dendrites; 2) hyperpolarization resulting from K+ channel activation would deinactivate low-threshold, T-type calcium channels on dendrites, increasing calcium influx mediated by these channels; and 3) activation of these receptors would inhibit propagation of action potentials into dendrites, and thus indirectly decrease calcium influx. Activation of adenosine receptors, which couple to Gi proteins, inhibited calcium influx in cell bodies and proximal dendrites without inhibiting action-potential propagation into the proximal dendrites. Inhibition of dendritic calcium influx was not changed in the presence of 50 μM nickel, which preferentially blocks T-type channels, suggesting influx through these channels is not increased by activation of G-proteins. Adenosine inhibited propagation of action potentials into the distal branches of pyramidal neuron dendrites, leading to a three- to fourfold greater inhibition of calcium influx in the distal dendrites than in the soma or proximal dendrites. These results suggest that voltage-gated calcium channels are inhibited in pyramidal neuron dendrites, as they are in cell bodies and terminals and thatG-protein–mediated inhibition of action-potential propagation can contribute substantially to inhibition of dendritic calcium influx.


2003 ◽  
Vol 285 (6) ◽  
pp. C1464-C1474 ◽  
Author(s):  
B. Gong ◽  
D. Legault ◽  
T. Miki ◽  
S. Seino ◽  
J. M. Renaud

Although ATP-sensitive K+ (KATP) channel openers depress force, channel blockers have no effect. Furthermore, the effects of channel openers on single action potentials are quite small. These facts raise questions as to whether 1) channel openers reduce force via an activation of KATP channels or via some nonspecific effects and 2) the reduction in force by KATP channels operates by changes in amplitude and duration of the action potential. To answer the first question we tested the hypothesis that pinacidil, a channel opener, does not affect force during fatigue in muscles of Kir6.2-/- mice that have no cell membrane KATP channel activity. When wild-type extensor digitorum longus (EDL) and soleus muscles were stimulated to fatigue with one tetanus per second, pinacidil increased the rate at which force decreased, prevented a rise in resting tension, and improved force recovery. Pinacidil had none of these effects in Kir6.2-/- muscles. To answer the second question, we tested the hypothesis that the effects of KATP channels on membrane excitability are greater during action potential trains than on single action potentials, especially during metabolic stress such as fatigue. During fatigue, M wave areas of control soleus remained constant for 90 s, suggesting no change in action potential amplitude for half of the fatigue period. In the presence of pinacidil, the decrease in M wave areas became significant within 30 s, during which time the rate of fatigue also became significantly faster compared with control muscles. It is therefore concluded that, once activated, KATP channels depress force and that this depression involves a reduction in action potential amplitude.


2012 ◽  
Vol 302 (7) ◽  
pp. G740-G747 ◽  
Author(s):  
Galya R. Abdrakhmanova ◽  
Minho Kang ◽  
M. Imad Damaj ◽  
Hamid I. Akbarali

Recently, we reported that nicotine in vitro at a low 1-μM concentration suppresses hyperexcitability of colonic dorsal root ganglia (DRG; L1-L2) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation ( 1 ). Here we show that multiple action potential firing in colonic DRG neurons persisted at least for 3 wk post-DSS administration while the inflammatory signs were diminished. Similar to that in DSS-induced acute colitis, bath-applied nicotine (1 μM) gradually reduced regenerative multiple-spike action potentials in colonic DRG neurons to a single action potential in 3 wk post-DSS neurons. Nicotine (1 μM) shifted the activation curve for tetrodotoxin (TTX)-resistant sodium currents in inflamed colonic DRG neurons (voltage of half-activation changed from −37 to −32 mV) but did not affect TTX-sensitive currents in control colonic DRG neurons. Further, subcutaneous nicotine administration (2 mg/kg b.i.d.) in DSS-treated C57Bl/J6 male mice resulted in suppression of hyperexcitability of colonic DRG (L1-L2) neurons and the number of abdominal constrictions in response to intraperitoneal injection of 0.6% acetic acid. Collectively, the data suggest that neuronal nicotinic acetylcholine receptor-mediated suppression of hyperexcitability of colonic DRG neurons attenuates reduction of visceral hypersensitivity in DSS mouse model of colonic inflammation.


1996 ◽  
Vol 75 (1) ◽  
pp. 154-170 ◽  
Author(s):  
M. E. Larkum ◽  
M. G. Rioult ◽  
H. R. Luscher

1. We examined the propagation of action potentials in the dendrites of ventrally located presumed motoneurons of organotypic rat spinal cord cultures. Simultaneous patch electrode recordings were made from the dendrites and somata of individual cells. In other experiments we visualized the membrane voltage over all the proximal dendrites simultaneously using a voltage-sensitive dye and an array of photodiodes. Calcium imaging was used to measure the dendritic rise in Ca2+ accompanying the propagating action potentials. 2. Spontaneous and evoked action potentials were recorded using high-resistance patch electrodes with separations of 30-423 microm between the somatic and dendritic electrodes. 3. Action potentials recorded in the dendrites varied considerably in amplitude but were larger than would be expected if the dendrites were to behave as passive cables (sometimes little or no decrement was seen for distances of > 100 microm). Because the amplitude of the action potentials in different dendrites was not a simple function of distance from the soma, we suggest that the conductance responsible for the boosting of the action potential amplitude varied in density from dendrite to dendrite and possibly along each dendrite. 4. The dendritic action potentials were usually smaller and broader and arrived later at the dendritic electrode than at the somatic electrode irrespective of whether stimulation occurred at the dendrite or soma or as a result of spontaneous synaptic activity. This is clear evidence that the action potential is initiated at or near the soma and spreads out into the dendrites. The conduction velocity of the propagating action potential was estimated to be 0.5 m/s. 5. The voltage time courses of previously recorded action potentials were generated at the soma using voltage clamp before and after applying 1 microM tetrodotoxin (TTX) over the soma and dendrites. TTX reduced the amplitude of the action potential at the dendritic electrode to a value in the range expected for dendrites that behave as passive cables. This indicates that the conductance responsible for the actively propagating action potentials is a Na+ conductance. 6. The amplitude of the dendritic action potential could also be initially reduced more than the somatic action potential using 1-10 mM QX-314 (an intracellular sodium channel blocker) in the dendritic electrode as the drug diffused from the dendritic electrode toward the soma. Furthermore, in some cases the action potential elicited by current injection into the dendrite had two components. The first component was blocked by QX-314 in the first few seconds of the diffusion of the blocker. 7. In some cells, an afterdepolarizing potential (ADP) was more prominent in the dendrite than in the soma. This ADP could be reversibly blocked by 1 mM Ni2+ or by perfusion of a nominally Ca2+-free solution over the soma and dendrites. This suggests that the back-propagating action potential caused an influx of Ca2+ predominantly in the dendrites. 8. With the use of a voltage-sensitive dye (di-8-ANEPPS) and an array of photodiodes, the action potential was tracked along all the proximal dendrites simultaneously. The results confirmed that the action potential propagated actively, in contrast to similarly measured hyperpolarizing pulses that spread passively. There were also indications that the action potential was not uniformly propagated in all the dendrites, suggesting the possibility that the distribution of Na+ channels over the dendritic membrane is not uniform. 9. Calcium imaging with the Ca2+ fluorescent indicator Fluo-3 showed a larger percentage change in fluorescence in the dendrites than in the soma. Both bursts and single action potentials elicited sharp rises in fluorescence in the proximal dendrites, suggesting that the back-propagating action potential causes a concomitant rise in intracellular calcium concentration...


Sign in / Sign up

Export Citation Format

Share Document