scholarly journals Strain variations in cone wavelength peaks in situ during zebrafish development

2019 ◽  
Vol 36 ◽  
Author(s):  
Ralph F. Nelson ◽  
Annika Balraj ◽  
Tara Suresh ◽  
Meaghan Torvund ◽  
Sara S. Patterson

Abstract There are four cone morphologies in zebrafish, corresponding to UV (U), blue (B), green (G), and red (R)-sensing types; yet genetically, eight cone opsins are expressed. How eight opsins are physiologically siloed in four cone types is not well understood, and in larvae, cone physiological spectral peaks are unstudied. We use a spectral model to infer cone wavelength peaks, semisaturation irradiances, and saturation amplitudes from electroretinogram (ERG) datasets composed of multi-wavelength, multi-irradiance, aspartate-isolated, cone-PIII signals, as compiled from many 5- to 12-day larvae and 8- to 18-month-old adult eyes isolated from wild-type (WT) or roy orbison (roy) strains. Analysis suggests (in nm) a seven-cone, U-360/B1-427/B2-440/G1-460/G3-476/R1-575/R2-556, spectral physiology in WT larvae but a six-cone, U-349/B1-414/G3-483/G4-495/R1-572/R2-556, structure in WT adults. In roy larvae, there is a five-cone structure: U-373/B2-440/G1-460/R1-575/R2-556; in roy adults, there is a four-cone structure, B1-410/G3-482/R1-571/R2-556. Existence of multiple B, G, and R types is inferred from shifts in peaks with red or blue backgrounds. Cones were either high or low semisaturation types. The more sensitive, low semisaturation types included U, B1, and G1 cones [3.0–3.6 log(quanta·μm−2·s−1)]. The less sensitive, high semisaturation types were B2, G3, G4, R1, and R2 types [4.3-4.7 log(quanta·μm−2·s−1)]. In both WT and roy, U- and B- cone saturation amplitudes were greater in larvae than in adults, while G-cone saturation levels were greater in adults. R-cone saturation amplitudes were the largest (50–60% of maximal dataset amplitudes) and constant throughout development. WT and roy larvae differed in cone signal levels, with lesser UV- and greater G-cone amplitudes occurring in roy, indicating strain variation in physiological development of cone signals. These physiological measures of cone types suggest chromatic processing in zebrafish involves at least four to seven spectral signal processing pools.

2016 ◽  
Vol 18 (42) ◽  
pp. 29435-29446 ◽  
Author(s):  
Zhuoran Wang ◽  
Samir Elouatik ◽  
George P. Demopoulos

The in situ Raman monitored annealing method is developed in this work to provide real-time information on phase formation and crystallinity evolution of kesterite deposited on a TiO2 mesoscopic scaffold.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 364 ◽  
Author(s):  
Nicolae Ajtai ◽  
Horațiu Ștefănie ◽  
Alexandru Mereuță ◽  
Andrei Radovici ◽  
Camelia Botezan

Mineral aerosols are considered to be the second largest source of natural aerosol, the Saharan desert being the main source of dust at global scale. Under certain meteorological conditions, Saharan dust can be transported over large parts of Europe, including Romania. The aim of this paper is to provide a complex analysis of a Saharan dust outbreak over the Transylvania region of Romania, based on the synergy of multiple ground-based and satellite sensors in order to detect the dust intrusion with a higher degree of certainty. The measurements were performed during the peak of the outbreak on April the 24th 2019, with instruments such as a Cimel sun-photometer and a multi-wavelength Raman depolarization lidar, together with an in-situ particle counter measuring at ground level. Remote sensing data from MODIS sensors on Terra and Aqua were also analyzed. Results show the presence of dust aerosol layers identified by the multi-wavelength Raman and depolarization lidar at altitudes of 2500–4000 m, and 7000 m, respectively. The measured optical and microphysical properties, together with the HYSPLIT back-trajectories, NMMB/BSC dust model, and synoptic analysis, confirm the presence of lofted Saharan dust layers over Cluj-Napoca, Romania. The NMMB/BSC dust model predicted dust load values between 1 and 1.5 g/m2 over Cluj-Napoca at 12:00 UTC for April the 24th 2019. Collocated in-situ PM monitoring showed that dry deposition was low, with PM10 and PM2.5 concentrations similar to the seasonal averages for Cluj-Napoca.


2012 ◽  
Vol 5 (1) ◽  
pp. 589-625
Author(s):  
R. E. Mamouri ◽  
A. Papayannis ◽  
V. Amiridis ◽  
D. Müller ◽  
P. Kokkalis ◽  
...  

Abstract. A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l.) using data obtained during the European Space Agency (ESA) THERMOPOLIS project which took place between 15–31 July 2009 over the Greater Athens Area (GAA). We selected to apply our procedure for a case study of intense aerosol layers occurred on 20–21 July 2009. The National Technical University of Athens (NTUA) EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio) and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius – reff), single-scattering albedo (ω) and mean complex refractive index (m) at selected heights in the 2–3 km height region. We found that reff was 0.3–0.4 μm, ω at 532 nm ranged from 0.63 to 0.88 and m ranged from 1.45 + 0.015i to 1.56 + 0.05i, in good accordance with in situ aircraft measurements. The final data set of the aerosol microphysical properties along with the water vapor and temperature profiles were incorporated into the ISORROPIA model to infer an in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2–3 km height region gave a variable range of sulfate (0–60%) and organic carbon (OC) content (0–50%), although the OC content increased (up to 50%) and the sulfate content dropped (up to 30%) around 3 km height; in connection with the retrieved low ω value (0.63), indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved aerosol microphysical properties were compared with column-integrated sunphotometer data.


1998 ◽  
Vol 11 (5) ◽  
pp. 637-647 ◽  
Author(s):  
J.D. Busbee ◽  
B. Igelnik ◽  
D. Liptak ◽  
R.R. Biggers ◽  
Maartense I

2014 ◽  
Vol 63 (15) ◽  
pp. 154206
Author(s):  
Xue Ming-Xi ◽  
Chen Zhi-Bin ◽  
Wang Wei-Ming ◽  
Ouyang Hui-Quan ◽  
Liu Xian-Hong ◽  
...  

2021 ◽  
Author(s):  
Taketoshi Kodama ◽  
Yukiko Taniuchi ◽  
Hiromi Kasai ◽  
Tamaha Yamaguchi ◽  
Misato Nakae ◽  
...  

AbstractPhytoplankton assemblages are important for understanding the quality of primary production in marine ecosystems. Here, we describe development of a methodology for monitoring marine phytoplankton assemblages using an in situ multi-wavelength excitation fluorometer (MEX) and its application for seasonal observations in coastal and offshore areas around Japan. The MEX recorded the fluorescence excited with nine light-emitting diodes, temperature, and sensor depth. We prepared reference datasets comprising temperature, MEX fluorescence, and plant-pigment-based chemotaxonomy phytoplankton assemblages. Target MEX fluorescence was decomposed by reference MEX fluorescence using a linear inverse model for calculating coefficients after the reference data were limited by temperature, followed by reconstruction of plant-pigment-based chemotaxonomy of the target MEX fluorescence using the coefficients and the chemotaxonomy assemblages of the reference data. Sensitivity analysis indicated poor estimation of the proportion and/or chlorophyll a-based abundance of chlorophytes, haptophytes, prasinophytes, and prochlorophytes; however, limiting the estimations to five chemotaxonomic groups [diatoms, dinoflagellates, cryptophytes, cyanobacteria (cyanophytes and prochlorophytes), and other eukaryotes (chlorophytes, haptophytes, and prasinophytes)] resulted in positive correlations of both the proportion and abundances, suggesting that the five taxonomic abundances were well-estimated using the MEX. Additionally, MEX observations denoted spatial and seasonal variations of phytoplankton assemblages, with high contributions from other eukaryotes in every area and season, cyanobacteria highly during the summer in surface Kuroshio and Japan Sea waters, and diatoms in the Oyashio and Oyashio–Kuroshio transition areas and the Okhotsk Sea. Furthermore, ratios of water-column-integrated chlorophyll-based abundances to those on the surface at the chemotaxonomy group level were differed among the areas and groups. These findings suggested that phytoplankton-assemblage monitoring in the vertical direction is essential for evaluation of their current biomass, and that the MEX promotes the acquisition of these observations.


2011 ◽  
Vol 7 (S286) ◽  
pp. 149-153
Author(s):  
Hebe Cremades ◽  
Cristina H. Mandrini ◽  
Sergio Dasso

AbstractWe have investigated two full solar rotations belonging to two distinct solar minima, in the frame of two coordinated observational and research campaigns. The nearly uninterrupted gathering of solar coronal data since the beginning of the SOHO era offers the exceptional possibility of comparing two solar minima for the first time, with regard to coronal transients. This study characterizes the variety of outward-travelling transients observed in the solar corona during both time intervals, from very narrow jet-like events to coronal mass ejections (CMEs). Their solar source regions and ensuing interplanetary structures were identified and characterized. Multi-wavelength images from the space missions SOHO, Yohkoh and STEREO, and ground-based observatories were studied for coronal ejecta and their solar sources, while in situ data registered by the ACE spacecraft were inspected for interplanetary CMEs and magnetic clouds. Instrumental aspects such as dissimilar resolution, cadence, and fields of view are considered in order to discern instrumentally-driven disparities from inherent differences between solar minima.


Sign in / Sign up

Export Citation Format

Share Document