A revision of Martin's seed classification system, with particular reference to his dwarf-seed type

2007 ◽  
Vol 17 (1) ◽  
pp. 11-20 ◽  
Author(s):  
Carol C. Baskin ◽  
Jerry M. Baskin

AbstractMartin's (1946) seed classification system has 10 types based on embryo and endosperm characteristics and two additional types based on seed size: dwarf (0.3–2.0 mm) and micro ( ≤ 0.2 mm). He listed 17 families and 12 genera (in five other families) as having dwarf seeds. Our recent discovery of morphophysiological dormancy in dwarf seeds of several taxa ofCampanulaceaeand one ofGentianaceaeprompted an evaluation of dwarf seeds. Martin's paper contains 37 families with one to several small (0.3–2.0 mm) seeded species that he did not list as being dwarf. Comparison of Martin's dwarf families and the 37 small-seeded non-dwarf families revealed no consistent differences between the two groups in endosperm texture, seed-coat anatomy, embryo morphology, class of seed dormancy or phylogenetic position. Also, Martin's dwarf seeds include a variety of embryo morphologies. Consequently, we have revised Martin's key to seed types. The dwarf category has been removed and the micro category replaced by ‘undifferentiated’ to reflect the state of the embryo in fresh seeds. Further, the key now includes linear fully developed, linear underdeveloped, spatulate fully developed and spatulate underdeveloped seed types, which Martin illustrated but did not include in his key. In the revised key, all seeds are distinguished on the basis of embryo and endosperm characteristics.

2021 ◽  
pp. 1-29
Author(s):  
Jerry M. Baskin ◽  
Carol C. Baskin

Abstract This review provides a revised and expanded word-formula system of whole-seed primary dormancy classification that integrates the scheme of Nikolaeva with that of Baskin and Baskin. Notable changes include the following. (1) The number of named tiers (layers) in the classification hierarchy is increased from three to seven. (2) Formulae are provided for the known kinds of dormancy. (3) Seven subclasses of class morphological dormancy are designated: ‘dust seeds’ of mycoheterotrophs, holoparasites and autotrophs; diaspores of palms; and seeds with cryptogeal germination are new to the system. (4) Level non-deep physiological dormancy (PD) has been divided into two sublevels, each containing three types, and Type 6 is new to the system. (5) Subclass epicotyl PD with two levels, each with three types, has been added to class PD. (6) Level deep (regular) PD is divided into two types. (7) The simple and complex levels of class morphophysiological dormancy (MPD) have been expanded to 12 subclasses, 24 levels and 16 types. (8) Level non-deep simple epicotyl MPD with four types is added to the system. (9) Level deep simple regular epicotyl MPD is divided into four types. (10) Level deep simple double MPD is divided into two types. (11) Seeds with a water-impermeable seed coat in which the embryo-haustorium grows after germination (Canna) has been added to the class combinational dormancy. The hierarchical division of primary seed dormancy into many distinct categories highlights its great diversity and complexity at the whole-seed level, which can be expressed most accurately by dormancy formulae.


2018 ◽  
Vol 22 (03) ◽  
pp. 69-71
Author(s):  
Binderya G ◽  
Tumenjargal D

The paper presents the results of the study on seed morphology and anatomy of Allium anisopodium Ldb. The seed shape is elliptic, glossy-black in color. The seed surface is scaly and its hilum appears in white color. The seed size is 1.7-2.1 mm long, 1.2-1.4 wide, 0.5-2.1 mm in thick and one thousand seed weight is 1.9 g. The anatomical structure is endospermic one cotyledons seed type. The seed coat thin and cotyledon is emphasized apparently from longitudinal section. The embryo is curved, coiled and black colored embryonic roots are relatively thick. The endosperm is surrounded by seed coat moreover between the cotyledon and embryo.


2008 ◽  
Vol 18 (3) ◽  
pp. 131-137 ◽  
Author(s):  
Jerry M. Baskin ◽  
Carol C. Baskin

AbstractThe five versions of the M.G. Nikolaeva seed dormancy terminology and formulae system are correlated to each other and to the dormancy terminology proposed by Baskin and Baskin [Seed Science Research14, 1–16 (2004)]. The proposal is made that the dormancy formula scheme of Nikolaeva [Botanicheskii Zhurnal86, 1–14 (2001)] be adopted as part of an international seed dormancy classification system, and her logic for derivation of the new formulae for physiological and morphophysiological dormancy is discussed via examples. We conclude that there are several advantages of adopting formulae into a seed dormancy classification system. However, Nikolaeva's scheme, especially the part for morphophysiological dormancy, probably needs a small amount of further refinement.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 506
Author(s):  
Dann Turner ◽  
Andrew M. Kropinski ◽  
Evelien M. Adriaenssens

Bacteriophage (phage) taxonomy has been in flux since its inception over four decades ago. Genome sequencing has put pressure on the classification system and recent years have seen significant changes to phage taxonomy. Here, we reflect on the state of phage taxonomy and provide a roadmap for the future, including the abolition of the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae. Furthermore, we specify guidelines for the demarcation of species, genus, subfamily and family-level ranks of tailed phage taxonomy.


2021 ◽  
Vol 2 ◽  
Author(s):  
Rajender Kumar Sharma

Abstract Seeds of Abrus precatorius L. (Fabaceae) were used as weight measure by Indigenous people. Where, the seeds were referred as Ratti; a traditional Indian unit of mass measurement. Seed weight fluctuates depending upon age, moisture, storage-period/conditions. Therefore, use of seeds as a weighing unit become dubious and need to be validated. For this purpose, seeds of A. precatorious were subjected to different moisture conditions and periodically monitored. Surprisingly, there was no change in seed weight was observed, indicating the impermeability of seed coat. The later was confirmed by scarification of seed coat which resulted in 53% increase in seed weight against 0% in control. Further, presence of a potent toxin (abrin) in the seed coat protects it from pests and microbes, and contributes to the maintenance of impermeability for longer period of time. The data validates the use of A. precatorious seeds as a weighing unit (ratti) by the indigenous people and discussed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Oyeyemi O. Ajayi ◽  
Michael A. Held ◽  
Allan M. Showalter

Abstract Background Arabinogalactan-proteins (AGPs) are heavily glycosylated with type II arabinogalactan (AG) polysaccharides attached to hydroxyproline residues in their protein backbone. Type II AGs are necessary for plant growth and critically important for the establishment of normal cellular functions. Despite the importance of type II AGs in plant development, our understanding of the underlying role of these glycans/sugar residues in mucilage formation and seed coat epidermal cell development is poorly understood and far from complete. One such sugar residue is the glucuronic acid residues of AGPs that are transferred onto AGP glycans by the action of β-glucuronosyltransferase genes/enzymes. Results Here, we have characterized two β-glucuronosyltransferase genes, GLCAT14A and GLCAT14C, that are involved in the transfer of β-glucuronic acid (GlcA) to type II AGs. Using a reverse genetics approach, we observed that glcat14a-1 mutants displayed subtle alterations in mucilage pectin homogalacturonan (HG) compared to wild type (WT), while glcat14a-1glcat14c-1 mutants displayed much more severe mucilage phenotypes, including loss of adherent mucilage and significant alterations in cellulose ray formation and seed coat morphology. Monosaccharide composition analysis showed significant alterations in the sugar amounts of glcat14a-1glcat14c-1 mutants relative to WT in the adherent and non-adherent seed mucilage. Also, a reduction in total mucilage content was observed in glcat14a-1glcat14c-1 mutants relative to WT. In addition, glcat14a-1glcat14c-1 mutants showed defects in pectin formation, calcium content and the degree of pectin methyl-esterification (DM) as well as reductions in crystalline cellulose content and seed size. Conclusions These results raise important questions regarding cell wall polymer interactions and organization during mucilage formation. We propose that the enzymatic activities of GLCAT14A and GLCAT14C play partially redundant roles and are required for the organization of the mucilage matrix and seed size in Arabidopsis thaliana. This work brings us a step closer towards identifying potential gene targets for engineering plant cell walls for industrial applications.


2007 ◽  
Vol 55 (6) ◽  
pp. 618 ◽  
Author(s):  
Kim N. Hamilton ◽  
Sarah E. Ashmore ◽  
Rod A. Drew ◽  
Hugh W. Pritchard

Combinational traits of seed size and seed-coat hardness in Citrus garrawayi (F.M.Bailey) (syn. of Microcitrus garrowayi) were investigated as markers for estimation of seed morphological and physiological maturity. Seed size (length) and coat hardness correlated well with changes in seed coat and embryo morphological development, dry-weight accumulation, decreases in moisture content and a significant increase in germinability. Seed moisture content decreased from 82 ± 1% in immature seeds to 40 ± 1% at seed maturation. The outer integument of immature seeds consisted of thin-walled epidermal fibres from which outgrowths of emerging protrusions were observed. In comparison, mature seed coats were characterised by the thickening of the cell walls of the epidermal fibres from which arose numerous protrusions covered by an extensive mucilage layer. Immature seeds, with incomplete embryo and seed-coat histodiffereniation, had a low mean germination percentage of 4 ± 4%. Premature seeds, with a differentiated embryonic axis, were capable of much higher levels of germination (51 ± 10%) before the attainment of mass maturity. Mature seeds, with the most well differentiated embryonic axis and maximum mean dry weight, had the significantly highest level of germination (88 ± 3%).


1970 ◽  
Vol 6 (1) ◽  
pp. 27-31 ◽  
Author(s):  
M. Osman Khidir ◽  
H. El Gizouli Osman

SummaryIn 90 local sesame types there was some association between seed coat colour and seed size, stem height, number of branches, number of pods, yield per plant and earliness. Forty-five coefficients show the degree of correlation between ten agronomic characters. Yield was significantly and positively correlated with all characters except the number of days to first flowering and to first maturity. Stem height, number of pods per plant and seed size seem to be the best criteria for selection in sesame.


Botany ◽  
2021 ◽  
Author(s):  
Lanlan He ◽  
Ganesh K. Jaganathan ◽  
Baolin Liu

The timing of germination is a crucial event in a plant’s life cycle. Seed dormancy and germination mechanisms are important factors regulating seedling emergence. Since detailed experimental evidence for germination pattern of Phoenix canariensis colonizing sub-tropical climate is scarce, we investigated seed dormancy and germination ecology of P. canariensis. We found that the embryo is underdeveloped at the time of dispersal and doubles in size before the cotyledonary petiole (CP) protrudes through the operculum. The primary root and plumule emerge from the elongated CP outside the seed. In light/dark at 30/25°C, the CP emerged from 8% of the diaspores within 30 days and from 76% within 14 weeks. Thus, 8% of the diaspores have MD and the others MPD. Removal of the pericarp and operculum resulted in 100% germination within 5 days in light/dark at 30/25°C. Cold and warm stratification as well as treatment with GA3 significantly increased the germination speed, but the final germination percentage was not significantly increased. Seed germination was synchronized in early summer when seed dormancy was released by cold stratification in the soil over winter. A remote-tubular germination type and intricate root system provide an ecological advantage to the seedling establishment.


Sign in / Sign up

Export Citation Format

Share Document