Effects of disturbance and rabbit grazing on seedling recruitment of six mesic grassland species

1999 ◽  
Vol 9 (2) ◽  
pp. 145-156 ◽  
Author(s):  
Grant R. Edwards ◽  
Michael J. Crawley

AbstractSeeds of two grass (Arrhenatherum elatius and Festuca rubra), two herb (Plantago lanceolata and Rumex acetosa) and two legume (Lotus corniculatus and Trifolium repens) species were sown in summer 1995 at four densities (no seed, 1000, 10 000 and 50 000 seeds m−2) into an established rabbit-grazed grassland given factorial combinations of rabbit fencing (with and without fences) and soil disturbance (with and without cultivation). On plots where no seeds were sown, only the species with persistent seed banks (P. lanceolata, L. corniculatus and T. repens) showed enhanced seedling emergence in response to disturbance. In disturbed soil, seedling densities of all species increased with increasing density of sown seeds, the effects of which were still evident for plant cover 2 years after seed sowing. In undisturbed vegetation, A. elatius, F. rubra, P. lanceolata and R. acetosa showed increased seedling densities following seed sowing; but in each case, there was an upper asymptote to seedling recruitment, presumably due to microsite limitation. Rabbit grazing reduced seedling densities, with this reduction being more pronounced with disturbance than without. However, the effect of rabbit grazing did not persist for some species; seedling mortality of R. acetosa, P. lanceolata, L. corniculatus and T. repens was higher on plots without rabbit grazing, so that plant densities of these species in summer 1996 and plant cover in summer 1997 were greater on grazed plots. The results indicate interactions between soil disturbance, propagule availability and herbivory, rather than disturbance alone, will play an important role in controlling seedling recruitment and species habitat distributions in grasslands.

2017 ◽  
Vol 31 (1) ◽  
pp. 100-110 ◽  
Author(s):  
Scott N. White ◽  
Shanthanu Krishna Kumar

Sheep and hair fescue are perennial, tuft forming grasses that spread by seed and form dense sods in wild blueberry fields. These sods compete with the crop for resources and hinder harvest. Field and greenhouse studies were conducted in 2015 to evaluate 1) the effect of sequential glufosinate and foramsulfuron applications on suppression of fescues in the greenhouse and field, and 2) efficacy of glufosinate and foramsulfuron on fescue seedlings when applied at 2, 4, 6, and 8 wk after seedling emergence in the greenhouse. Glufosinate applications at 750 and 1,005 g ai ha−1followed by foramsulfuron application at 35 g ai ha−1reduced fescue leaf number and biomass relative to foramsulfuron application alone in the greenhouse. In the field study, fescue flowering tuft density, tuft inflorescence height, seed production, and seed viability were reduced by foramsulfuron alone, but there was a trend towards lower seed production and tuft height when fescues were treated with glufosinate at 1,005 g ha−1followed by foramsulfuron. Foramsulfuron caused low seedling mortality at all application timings evaluated, but glufosinate caused >90% mortality in seedlings when applied at 2, 4, 6, or 8 wk after seedling emergence. Our results suggest that sequential applications of these herbicides are less effective under field conditions relative to results obtained in the greenhouse, though burndown glufosinate applications may have a role in reducing fescue seedling recruitment. Additional research should be conducted to determine the effect of early spring and autumn glufosinate applications on fescue seedling recruitment and suppression of established fescue tufts with subsequent foramsulfuron applications.


1995 ◽  
Vol 43 (1) ◽  
pp. 13 ◽  
Author(s):  
JW Morgan

The emergence, survival and growth of seedlings of the endangered Rutidosis leptorrhynchoides F.Muell. were followed in a Themeda triandra grassland during 1991 and 1992. The effect of summer irrigation on seedling survival was also investigated. Seedling emergence occurred in both years within 2 weeks of the 'autumn break' when soil moisture rose above 20%. Ninety percent of emergence was observed within 4 weeks of the onset of germination and 87% of seedlings were within 20 cm of an established plant. No emergence was observed after 8 weeks. Thirteen percent of the 1991 cohort survived for 14 months. Mortality of most seedlings (63%) was attributed to soil moisture stress in summer. Small seedlings (Ͱ4 3 leaves) were no more susceptible to drought than larger seedlings. Seventy two percent of the 1991 cohort produced four leaves before subsequently dying. In 1992, however, most early seedling mortality was amongst cotyledonary seedlings. No seedlings flowered in their first year. Above-ground growth was slow and by 14 months, 60% of surviving seedlings had seven or fewer live leaves. Irrigation in a year of below-average rainfall had no significant effect on the survival and growth of seedlings. This suggests that seedling recruitment is not restricted to climatically favourable years (i.e. is not episodic) but rather, is potentially on-going provided suitable microsites are available for seedling survival.


Weed Science ◽  
2011 ◽  
Vol 59 (3) ◽  
pp. 314-320 ◽  
Author(s):  
Muthukumar V. Bagavathiannan ◽  
Robert H. Gulden ◽  
Rene C. Van Acker

Alfalfa is an important forage crop in North America, and it can also be found as a roadside weed in alfalfa-growing regions. Weediness and invasiveness are greatly facilitated by establishment ability, yet little is known about the ability of alfalfa to establish in competitive environments such as roadsides. The primary objective of this study was to estimate the degree of alfalfa establishment without managed cultivation under different seed-dispersal times and disturbance regimes. The study had a split-plot design with two main plots (spring and fall seed dispersal) and five subplots (mowing, soil disturbance, herbicide spray, seedbed, and undisturbed control). The study examined establishment, growth attributes, and reproductive output of alfalfa in response to these treatments. Alfalfa establishment in the undisturbed grass swards ranged between 0.5 and 9.7% (out of the total number of seeds dispersed) across the dispersal times. The density of alfalfa in fall-seeded plots was about 82% lower than in spring-seeded plots. Soil disturbance reduced the density of alfalfa to < 50% of the initial density. Generally, low plant densities were compensated over time by increased numbers of shoots and reproductive units (racemes and pods) per plant. Herbicide application (2,4-D + dicamba) effectively controlled all emerged alfalfa plants, but in some cases, seedling recruitment was observed in the years following herbicide application. Although mowing did not kill alfalfa plants, mowed plants did not produce mature seeds, and as such, mowing may be useful in restricting the reproductive success and population growth of alfalfa. Overall, it is evident that alfalfa is capable of establishing in competitive environments (such as roadside habitats) and rapidly recovering from moderate disturbances. The results of this study have implications for managing roadside alfalfa and for designing novel trait-confinement protocols for alfalfa.


2011 ◽  
Vol 62 (7) ◽  
pp. 591 ◽  
Author(s):  
R. Thapa ◽  
D. R. Kemp ◽  
D. L. Michalk ◽  
W. B. Badgery ◽  
A. T. Simmons

Two field experiments, one each on Austrodanthonia spp. and Bothriochloa macra, investigated the effects of biomass manipulation, seed level modification, site preparation and pasture composition on the recruitment of native perennial grass seedlings. The experiments coincided with drier than average years and although successful emergence of seedlings occurred, survival was extremely low. In the Austrodanthonia experiment, control treatments resulted in the emergence of only 1 seedling/m2, whereas there were 130/m2 in the best treatment which had biomass cut with plant material removed, seed added, and the soil surface scarified. Insecticide treatments increased emergence as seed-harvesting ants are common in these systems, but the benefits were small. Similarly, B. macra had no emergence in the control treatment compared with 73 seedlings/m2 in the best treatment, which was pasture cropped, and had seed added and herbicide applied. Availability of microsites may be a major constraint to B. macra emergence, as soil disturbance through pasture cropping substantially increased seedling numbers (279/m2). The effects of herbicide on emergence were small with the largest being related to bare ground and litter biomass. Austrodanthonia seedling numbers at emergence were related to bare ground, litter and green biomass. Survival of young Austrodanthonia plants 24 weeks after emergence was negatively related to plant cover, but only in treatments where plant material was cut and removed. The success of survival was determined at 52 weeks after emergence and the number of young plants that survived in both experiments seemed to have been influenced by the presence of competitive biomass of existing plants.


2021 ◽  
Vol 14 (1) ◽  
pp. 3-8
Author(s):  
Philip W. Tipping ◽  
Melissa R. Martin ◽  
Jeremiah R. Foley ◽  
Ryan M. Pierce ◽  
Lyn A. Gettys

AbstractThe potential of Melaleuca quinquenervia (Cav.) S.T. Blake to reinvade cleared areas was evaluated over a 13-yr period that included two wildfires and the introduction of biological control agents. The first wildfire occurred in 1998 and was followed by a mean of 591.5 recruited seedlings m−2. Recruits from that fire were cleared 7 yr later in July 2005 for a second experiment to evaluate seedling recruitment into cleared areas. Seed rain, seedling recruitment and mortality, and sapling growth rates were measured in four plots located around individual large reproductive trees. A second natural wildfire in 2007 burned through those plots, leading to increases in seed rain followed by a pulse in recruitment of 21.04 seedlings m−2, 96.5% fewer than after the 1998 fire. Recruits in half of the plots around each tree were then treated with regular applications of an insecticide to restrict herbivory by biological control agents, while herbivory was not restricted in the other half. There was no difference in seedling mortality between treatments 1,083 d post-fire (2007) with 96.6% seedling mortality in the unrestricted herbivory treatment and 89.4% mortality in the restricted herbivory treatment. Recruits subjected to the restricted herbivory treatment grew taller than those in the unrestricted herbivory treatment, 101.3 cm versus 37.4 cm. Many of the recruits were attacked by the biological control agents, which slowed their growth. Although solitary M. quinquenervia trees retain some capacity to reinvade areas under specific circumstances, there was a downward trend in their overall invasiveness at this site, with progressively smaller recruitment cohorts due to biological control agents. Land managers should prioritize removing large reproductive trees over treating recently recruited populations, which can be left for many years for the biological control agents to suppress before any additional treatment would be needed.


Alpine Botany ◽  
2021 ◽  
Author(s):  
Vera Margreiter ◽  
Janette Walde ◽  
Brigitta Erschbamer

AbstractSeed germination and seedling recruitment are key processes in the life cycle of plants. They enable populations to grow, migrate, or persist. Both processes are under environmental control and influenced by site conditions and plant–plant interactions. Here, we present the results of a seed-sowing experiment performed along an elevation gradient (2000–2900 m a.s.l.) in the European eastern Alps. We monitored the germination of seeds and seedling recruitment for 2 years. Three effects were investigated: effects of sites and home sites (seed origin), effects of gaps, and plant–plant interactions. Seeds of eight species originating from two home sites were transplanted to four sites (home site and ± in elevation). Seed sowing was performed in experimentally created gaps. These gap types (‘gap + roots’, ‘neighbor + roots’, and ‘no-comp’) provided different plant–plant interactions and competition intensities. We observed decreasing germination with increasing elevation, independent of the species home sites. Competition-released gaps favored recruitment, pointing out the important role of belowground competition and soil components in recruitment. In gaps with one neighboring species, neutral plant–plant interactions occurred (with one exception). However, considering the relative vegetation cover of each experimental site, high vegetation cover resulted in positive effects on recruitment at higher sites and neutral effects at lower sites. All tested species showed intraspecific variability when responding to the experimental conditions. We discuss our findings considering novel site and climatic conditions.


Botany ◽  
2017 ◽  
Vol 95 (1) ◽  
pp. 73-88 ◽  
Author(s):  
Vigdis Vandvik ◽  
Reidar Elven ◽  
Joachim Töpper

Environmental cueing that restricts seed germination to times and places where mortality risk is relatively low may have considerable selective advantage. The predictive power of lab germination responses for field regeneration behaviour is rarely tested. We screened 11 alpine grassland forbs for germination behaviour predictive of microsite and seasonal selectivity, and seed carry-over across years. The predictions were tested in a field experiment. Germination in the lab ranged from 0.05% to 67.9%, and was affected by light (5 species), temperature (6 species), fluctuating temperatures (4 species), moist chilling prior to germination (cold-stratification) (6 species), and dormancy-breaking by means of gibberellic acid (8 species). Seedling emergence in the field varied from 0.1% to 14.1%, and increased in low-competition microsites (bare-ground gaps and cut vegetation; 7 species), and showed seasonal timing (1 species in autumn and 1 species in spring), and seed carry-over across years (7 species). Lab germination responses successfully predicted microsite selectivity in the field and to some extent seed carry-over across years but not seasonal timing of germination. Gap-detecting species were generally small-seeded, low-growing, and found in unproductive habitats. Larger-seeded species germinated in all of the microsites but experienced increased mortality in high-competition microsites. Seed carry-over across years was lower for alpine specialists than for more widely-distributed species.


2016 ◽  
Vol 283 (1844) ◽  
pp. 20161634 ◽  
Author(s):  
Hannah M. Griffiths ◽  
Richard D. Bardgett ◽  
Julio Louzada ◽  
Jos Barlow

Anthropogenic activities are causing species extinctions, raising concerns about the consequences of changing biological communities for ecosystem functioning. To address this, we investigated how dung beetle communities influence seed burial and seedling recruitment in the Brazilian Amazon. First, we conducted a burial and retrieval experiment using seed mimics. We found that dung beetle biomass had a stronger positive effect on the burial of large than small beads, suggesting that anthropogenic reductions in large-bodied beetles will have the greatest effect on the secondary dispersal of large-seeded plant species. Second, we established mesocosm experiments in which dung beetle communities buried Myrciaria dubia seeds to examine plant emergence and survival. Contrary to expectations, we found that beetle diversity and biomass negatively influenced seedling emergence, but positively affected the survival of seedlings that emerged. Finally, we conducted germination trials to establish the optimum burial depth of experimental seeds, revealing a negative relationship between burial depth and seedling emergence success. Our results provide novel evidence that seed burial by dung beetles may be detrimental for the emergence of some seed species. However, we also detected positive impacts of beetle activity on seedling recruitment, which are probably because of their influence on soil properties. Overall, this study provides new evidence that anthropogenic impacts on dung beetle communities could influence the structure of tropical forests; in particular, their capacity to regenerate and continue to provide valuable functions and services.


Weed Science ◽  
1993 ◽  
Vol 41 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Meiqin Qi ◽  
Mahesh K. Upadhyaya

To understand persistence strategies of meadow and western salsify, ecophysiological characteristics of their seed germination were studied. Anaerobiosis (immersion in deoxygenated water) induced secondary dormancy in seeds of both species. Dormancy could be induced in 86% of meadow salsify seeds and in 65% of western salsify seeds by a 1-d anaerobiosis treatment. The induced dormancy was gradually released during storage of air-dried secondary dormant meadow salsify seeds, and the rate of this release was influenced by storage temperature; 30 C was more effective than 10 or 20 C in releasing secondary dormancy. These results suggest that the two species may rely on induced dormancy as an option in their persistence strategy. The optimum temperature for germination of nondormant seeds of both species was 15 C. Maximum germination percentages for both species were established within 4 to 6 d of incubation at 15 C and within 14 to 28 d of incubation at 25 C. Nondormant seeds did not germinate below 10 or above 30 C. Stratification (at 5 C for 2 to 10 wk) stimulated germination of secondary dormant seeds of meadow salsify. This stratification requirement can be important in preventing germination of dormant salsify seeds in the fall, thereby avoiding high seedling mortality in the winter. Light (red and far-red) had no effect on germination of seeds in secondary dormancy. In a separate study, seeds of both species were planted in pots at depths of 2 to 14 cm and seedling emergence was observed. Maximum emergence occurred when seeds were buried 2 cm deep. Seeds planted 8 cm or deeper germinated but did not emerge.


1995 ◽  
Vol 25 (10) ◽  
pp. 1639-1651 ◽  
Author(s):  
Sybille Haeussler ◽  
John C. Tappeiner II ◽  
Brian J. Greber

Effects of forest disturbance and soil moisture levels on establishment of red alder (Alnusrubra Bong.) seedlings were studied at four sites representing a climatic moisture gradient within the central Coast Range of Oregon. On average, there was no difference in seedling emergence between recent clearcuts and second-growth forests, but emergence was much higher on mineral soil than on organic seedbeds. Emergence, on both types of seedbed, was positively correlated with spring soil moisture conditions (R2 = 0.60). Seedling survival, on the other hand, differed greatly between clearcut and forest. In clearcuts, heat and drought injuries were the primary causes of seedling mortality. In the forest, seedlings had poor vigour and quickly succumbed to pathogens, herbivores, and rain splash. First-year survival rates were strongly correlated with minimum summer soil moisture levels (R2 = 0.71). Height growth of seedlings on clearcuts (2–5 cm after 1 year; 8–23 cm after 2 years) was much slower than rates typically described for red alder. Best establishment occurred on skid trails and landings, suggesting that young seedlings may suffer less from heat or moisture stress on these heavily disturbed microenvironments.


Sign in / Sign up

Export Citation Format

Share Document