Constructive Packings by Linear Hypergraphs

2013 ◽  
Vol 22 (6) ◽  
pp. 829-858 ◽  
Author(s):  
JILL DIZONA ◽  
BRENDAN NAGLE

For k-graphs F0 and H, an F0-packing of H is a family $\mathscr{F}$ of pairwise edge-disjoint copies of F0 in H. Let νF0(H) denote the maximum size |$\mathscr{F}$| of an F0-packing of H. Already in the case of graphs, computing νF0(H) is NP-hard for most fixed F0 (Dor and Tarsi [6]).In this paper, we consider the case when F0 is a fixed linear k-graph. We establish an algorithm which, for ζ > 0 and a given k-graph H, constructs in time polynomial in |V(H)| an F0-packing of H of size at least νF0(H) − ζ |V(H)|k. Our result extends one of Haxell and Rödl, who established the analogous algorithm for graphs.

2020 ◽  
Vol 29 (5) ◽  
pp. 757-779 ◽  
Author(s):  
Patrick Bennett ◽  
Andrzej Dudek ◽  
Shira Zerbib

AbstractThe triangle packing number v(G) of a graph G is the maximum size of a set of edge-disjoint triangles in G. Tuza conjectured that in any graph G there exists a set of at most 2v(G) edges intersecting every triangle in G. We show that Tuza’s conjecture holds in the random graph G = G(n, m), when m ⩽ 0.2403n3/2 or m ⩾ 2.1243n3/2. This is done by analysing a greedy algorithm for finding large triangle packings in random graphs.


2012 ◽  
Vol 21 (3) ◽  
pp. 511-513 ◽  
Author(s):  
Hannah Alpert ◽  
Jennifer Iglesias
Keyword(s):  
Np Hard ◽  

2016 ◽  
Vol 25 (5) ◽  
pp. 645-667 ◽  
Author(s):  
JACOB D. BARON ◽  
JEFF KAHN

An old conjecture of Z. Tuza says that for any graphG, the ratio of the minimum size, τ3(G), of a set of edges meeting all triangles to the maximum size, ν3(G), of an edge-disjoint triangle packing is at most 2. Here, disproving a conjecture of R. Yuster, we show that for any fixed, positive α there are arbitrarily large graphsGof positive density satisfying τ3(G) > (1 −o(1))|G|/2 and ν3(G) < (1 + α)|G|/4.


2002 ◽  
Vol 12 (04) ◽  
pp. 269-281 ◽  
Author(s):  
ALEXANDER WOLFF ◽  
MICHAEL THON ◽  
YINFENG XU

Given a set P of n points in the plane, the two-circle point-labeling problem consists of placing 2n uniform, non-intersecting, maximum-size open circles such that each point touches exactly two circles. It is known that this problem is NP-hard to approximate. In this paper we give a simple algorithm that improves the best previously known approximation factor from [Formula: see text] to 2/3. The main steps of our algorithm are as follows. We first compute the Voronoi diagram, then label each point optimally within its cell, compute the smallest label diameter over all points and finally shrink all labels to this size. We keep the O(n log n) time and O(n) space bounds of the previously best algorithm.


1991 ◽  
Vol 65 (04) ◽  
pp. 425-431 ◽  
Author(s):  
F Stockmans ◽  
H Deckmyn ◽  
J Gruwez ◽  
J Vermylen ◽  
R Acland

SummaryA new in vivo method to study the size and dynamics of a growing mural thrombus was set up in the rat femoral vein. The method uses a standardized crush injury to induce a thrombus, and a newly developed transilluminator combined with digital analysis of video recordings. Thrombi in this model formed rapidly, reaching a maximum size 391 ± 35 sec following injury, after which they degraded with a half-life of 197 ± 31 sec. Histological examination indicated that the thrombi consisted mainly of platelets. The quantitative nature of the transillumination technique was demonstrated by simultaneous measurement of the incorporation of 111In labeled platelets into the thrombus. Thrombus formation, studied at 30 min interval in both femoral veins, showed satisfactory reproducibility overall and within a given animalWith this method we were able to induce a thrombus using a clinically relevant injury and to monitor continuously and reproducibly the kinetics of thrombus formation in a vessel of clinically and surgically relevant size


2020 ◽  
Vol 646 ◽  
pp. 79-92
Author(s):  
RE Scheibling ◽  
R Black

Population dynamics and life history traits of the ‘giant’ limpet Scutellastra laticostata on intertidal limestone platforms at Rottnest Island, Western Australia, were recorded by interannual (January/February) monitoring of limpet density and size structure, and relocation of marked individuals, at 3 locations over periods of 13-16 yr between 1993 and 2020. Limpet densities ranged from 4 to 9 ind. m-2 on wave-swept seaward margins of platforms at 2 locations and on a rocky notch at the landward margin of the platform at a third. Juvenile recruits (25-55 mm shell length) were present each year, usually at low densities (<1 m-2), but localized pulses of recruitment occurred in some years. Annual survival rates of marked limpets varied among sites and cohorts, ranging from 0.42 yr-1 at the notch to 0.79 and 0.87 yr-1 on the platforms. A mass mortality of limpets on the platforms occurred in 2003, likely mediated by thermal stress during daytime low tides, coincident with high air temperatures and calm seas. Juveniles grew rapidly to adult size within 2 yr. Asymptotic size (L∞, von Bertalanffy growth model) ranged from 89 to 97 mm, and maximum size from 100 to 113 mm, on platforms. Growth rate and maximum size were lower on the notch. Our empirical observations and simulation models suggest that these populations are relatively stable on a decadal time scale. The frequency and magnitude of recruitment pulses and high rate of adult survival provide considerable inertia, enabling persistence of these populations in the face of sporadic climatic extremes.


10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu Yao ◽  
Junhui Zhao ◽  
Lenan Wu

This correspondence deals with the joint cognitive design of transmit coded sequences and instrumental variables (IV) receive filter to enhance the performance of a dual-function radar-communication (DFRC) system in the presence of clutter disturbance. The IV receiver can reject clutter more efficiently than the match filter. The signal-to-clutter-and-noise ratio (SCNR) of the IV filter output is viewed as the performance index of the complexity system. We focus on phase only sequences, sharing both a continuous and a discrete phase code and develop optimization algorithms to achieve reasonable pairs of transmit coded sequences and IV receiver that fine approximate the behavior of the optimum SCNR. All iterations involve the solution of NP-hard quadratic fractional problems. The relaxation plus randomization technique is used to find an approximate solution. The complexity, corresponding to the operation of the proposed algorithms, depends on the number of acceptable iterations along with on and the complexity involved in all iterations. Simulation results are offered to evaluate the performance generated by the proposed scheme.


2021 ◽  
Vol 300 ◽  
pp. 1-8
Author(s):  
Jelena Sedlar ◽  
Riste Škrekovski

Sign in / Sign up

Export Citation Format

Share Document