scholarly journals Singularity Analysis Via the Iterated Kernel Method

2014 ◽  
Vol 23 (5) ◽  
pp. 861-888 ◽  
Author(s):  
STEPHEN MELCZER ◽  
MARNI MISHNA

In the quarter plane, five lattice path models with unit steps have resisted the otherwise general approach featured in recent works by Fayolle, Kurkova and Raschel. Here we consider these five models, called the singular models, and prove that the univariate generating functions marking the number of walks of a given length are not D-finite. Furthermore, we provide exact and asymptotic enumerative formulas for the number of such walks, and describe an efficient algorithm for exact enumeration.

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Stephen Melczer ◽  
Marni Mishna

International audience We provide exact and asymptotic counting formulas for five singular lattice path models in the quarter plane. Furthermore, we prove that these models have a non D-finite generating function. Nous présentons des résultats énumératifs pour les cinq modèles de marche dans le quart de plan dites "singulière''. Nous prouvons que ces modèles sont non-holonomes.


10.37236/156 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
M. Kuba ◽  
A. Panholzer ◽  
H. Prodinger

In this work we consider weighted lattice paths in the quarter plane ${\Bbb N}_0\times{\Bbb N}_0$. The steps are given by $(m,n)\to(m-1,n)$, $(m,n)\to(m,n-1)$ and are weighted as follows: $(m,n)\to(m-1,n)$ by $m/(m+n)$ and step $(m,n)\to(m,n-1)$ by $n/(m+n)$. The considered lattice paths are absorbed at lines $y=x/t -s/t$ with $t\in{\Bbb N}$ and $s\in{\Bbb N}_0$. We provide explicit formulæ for the sum of the weights of paths, starting at $(m,n)$, which are absorbed at a certain height $k$ at lines $y=x/t -s/t$ with $t\in{\Bbb N}$ and $s\in{\Bbb N}_0$, using a generating functions approach. Furthermore these weighted lattice paths can be interpreted as probability distributions arising in the context of Pólya-Eggenberger urn models, more precisely, the lattice paths are sample paths of the well known sampling without replacement urn. We provide limiting distribution results for the underlying random variable, obtaining a total of five phase changes.


2014 ◽  
Vol 23 (6) ◽  
pp. 1057-1086 ◽  
Author(s):  
PETER J. GRABNER ◽  
ARNOLD KNOPFMACHER ◽  
STEPHAN WAGNER

We consider statistical properties of random integer partitions. In order to compute means, variances and higher moments of various partition statistics, one often has to study generating functions of the form P(x)F(x), where P(x) is the generating function for the number of partitions. In this paper, we show how asymptotic expansions can be obtained in a quasi-automatic way from expansions of F(x) around x = 1, which parallels the classical singularity analysis of Flajolet and Odlyzko in many ways. Numerous examples from the literature, as well as some new statistics, are treated via this methodology. In addition, we show how to compute further terms in the asymptotic expansions of previously studied partition statistics.


2011 ◽  
pp. 375-438 ◽  
Author(s):  
Philippe Flajolet ◽  
Robert Sedgewick

10.37236/7375 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Nicholas R. Beaton ◽  
Mathilde Bouvel ◽  
Veronica Guerrini ◽  
Simone Rinaldi

We provide a new succession rule (i.e. generating tree) associated with Schröder numbers, that interpolates between the known succession rules for Catalan and Baxter numbers. We define Schröder and Baxter generalizations of parallelogram polyominoes, called slicings, which grow according to these succession rules. In passing, we also exhibit Schröder subclasses of Baxter classes, namely a Schröder subset of triples of non-intersecting lattice paths, a new Schröder subset of Baxter permutations, and a new Schröder subset of mosaic floorplans. Finally, we define two families of subclasses of Baxter slicings: the $m$-skinny slicings and the $m$-row-restricted slicings, for $m \in \mathbb{N}$. Using functional equations and the kernel method, their generating functions are computed in some special cases, and we conjecture that they are algebraic for any $m$.


2009 ◽  
Vol 46 (04) ◽  
pp. 1005-1019 ◽  
Author(s):  
Miklós Bóna ◽  
Philippe Flajolet

The probability that two randomly selected phylogenetic trees of the same size are isomorphic is found to be asymptotic to a decreasing exponential modulated by a polynomial factor. The number of symmetrical nodes in a random phylogenetic tree of large size obeys a limiting Gaussian distribution, in the sense of both central and local limits. The probability that two random phylogenetic trees have the same number of symmetries asymptotically obeys an inverse square-root law. Precise estimates for these problems are obtained by methods of analytic combinatorics, involving bivariate generating functions, singularity analysis, and quasi-powers approximations.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Stephen Melczer ◽  
Mark C. Wilson

International audience We consider the enumeration of walks on the two-dimensional non-negative integer lattice with steps defined by a finite set S ⊆ {±1, 0}2 . Up to isomorphism there are 79 unique two-dimensional models to consider, and previous work in this area has used the kernel method, along with a rigorous computer algebra approach, to show that 23 of the 79 models admit D-finite generating functions. In 2009, Bostan and Kauers used Pade ́-Hermite approximants to guess differential equations which these 23 generating functions satisfy, in the process guessing asymptotics of their coefficient sequences. In this article we provide, for the first time, a complete rigorous verification of these guesses. Our technique is to use the kernel method to express 19 of the 23 generating functions as diagonals of tri-variate rational functions and apply the methods of analytic combinatorics in several variables (the remaining 4 models have algebraic generating functions and can thus be handled by univariate techniques). This approach also shows the link between combinatorial properties of the models and features of its asymptotics such as asymptotic and polynomial growth factors. In addition, we give expressions for the number of walks returning to the x-axis, the y-axis, and the origin, proving recently conjectured asymptotics of Bostan, Chyzak, van Hoeij, Kauers, and Pech.


2015 ◽  
Vol 25 (2) ◽  
pp. 157-176 ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

Abstract A permutation of length n may be represented, equivalently, by a sequence a1a2 • • • an satisfying 0 < ai < i for all z, which is called an inversion sequence. In analogy to the usual case for permutations, the pattern avoidance question is addressed for inversion sequences. In particular, explicit formulas and/or generating functions are derived which count the inversion sequences of a given length that avoid a single pattern of length three. Among the sequences encountered are the Fibonacci numbers, the Schröder numbers, and entry A200753 in OEIS. We make use of both algebraic and combinatorial methods to establish our results. An explicit Injection is given between two of the avoidance classes, and in three cases, the kernel method is used to solve a functional equation satisfied by the generating function enumerating the class in question.


10.37236/8024 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
N. R. Beaton ◽  
A. L. Owczarek ◽  
A. Rechnitzer

The set of random walks with different step sets (of short steps) in the quarter plane has provided a rich set of models that have profoundly different integrability properties. In particular, 23 of the 79 effectively different models can be shown to have generating functions that are algebraic or differentiably finite. Here we investigate how this integrability may change in those 23 models where in addition to length one also counts the number of sites of the walk touching either the horizontal and/or vertical boundaries of the quarter plane. This is equivalent to introducing interactions with those boundaries in a statistical mechanical context. We are able to solve for the generating function in a number of cases. For example, when counting the total number of boundary sites without differentiating whether they are horizontal or vertical, we can solve the generating function of a generalised Kreweras model. However, in many instances we are not able to solve as the kernel methodology seems to break down when including counts with the boundaries.


10.37236/7799 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Veronika Irvine ◽  
Stephen Melczer ◽  
Frank Ruskey

Inspired by a new mathematical model for bobbin lace, this paper considers finite lattice paths formed from the set of step vectors $\mathfrak{A}=$$\{\rightarrow,$ $\nearrow,$ $\searrow,$ $\uparrow,$ $\downarrow\}$ with the restriction that vertical steps $(\uparrow, \downarrow)$ cannot be consecutive. The set $\mathfrak{A}$ is the union of the well known Motzkin step vectors $\mathfrak{M}=$$\{\rightarrow,$ $\nearrow,$ $\searrow\}$ with the vertical steps $\{\uparrow, \downarrow\}$. An explicit bijection $\phi$ between the exhaustive set of vertically constrained paths formed from $\mathfrak{A}$ and a bisection of the paths generated by $\mathfrak{M}S$ is presented. In a similar manner, paths with the step vectors $\mathfrak{B}=$$\{\nearrow,$ $\searrow,$ $\uparrow,$ $\downarrow\}$, the union of Dyck step vectors and constrained vertical steps, are examined.  We show, using the same $\phi$ mapping, that there is a bijection between vertically constrained $\mathfrak{B}$ paths and the subset of Motzkin paths avoiding horizontal steps at even indices.  Generating functions are derived to enumerate these vertically constrained, partially directed paths when restricted to the half and quarter-plane.  Finally, we extend Schröder and Delannoy step sets in a similar manner and find a bijection between these paths and a subset of Schröder paths that are smooth (do not change direction) at a regular horizontal interval.


Sign in / Sign up

Export Citation Format

Share Document