Evolutionary Patterns Within Fossil Lineages: Model-Based Assessment of Modes, Rates, Punctuations and Process

2008 ◽  
Vol 14 ◽  
pp. 117-131 ◽  
Author(s):  
Gene Hunt

Patterns of phenotypic change documented in the fossil record offer the only direct view scientists have of evolutionary transitions arrayed over significant durations of time. What lessons should be drawn from these data, however, has proven to be rather contentious. Although we as paleontologists have made great progress in documenting the geological record of phenotypic evolution with greater thoroughness and sophistication, these successes have been limited by the use of verbal models of how phenotypes change. Descriptive terms such as “gradual” have been understood differently by different authors, and this has led to completely incompatible summary statements about the fossil record of morphological evolution. Here I argue that the solution to this ambiguity lies in insisting that different evolutionary interpretations be represented as explicit, statistical models of evolution. With such an approach, the powerful machinery of likelihood-based inference can be help resolve long-standing paleontological questions.Here I first review this approach and some aspects of its implementation. Then, I show how this approach leads to new traction on important issues in evolutionary paleobiology, including: understanding modes of evolution and determining their relative importance, separating evolutionary mode from tempo, assessing the evidence for hypotheses of punctuated change, and detecting adaptive evolution in the fossil record.

2015 ◽  
Vol 282 (1821) ◽  
pp. 20152023 ◽  
Author(s):  
Mark N. Puttick ◽  
Gavin H. Thomas

Most of life is extinct, so incorporating some fossil evidence into analyses of macroevolution is typically seen as necessary to understand the diversification of life and patterns of morphological evolution. Here we test the effects of inclusion of fossils in a study of the body size evolution of afrotherian mammals, a clade that includes the elephants, sea cows and elephant shrews. We find that the inclusion of fossil tips has little impact on analyses of body mass evolution; from a small ancestral size (approx. 100 g), there is a shift in rate and an increase in mass leading to the larger-bodied Paenungulata and Tubulidentata, regardless of whether fossils are included or excluded from analyses. For Afrotheria, the inclusion of fossils and morphological character data affect phylogenetic topology, but these differences have little impact upon patterns of body mass evolution and these body mass evolutionary patterns are consistent with the fossil record. The largest differences between our analyses result from the evolutionary model, not the addition of fossils. For some clades, extant-only analyses may be reliable to reconstruct body mass evolution, but the addition of fossils and careful model selection is likely to increase confidence and accuracy of reconstructed macroevolutionary patterns.


2017 ◽  
Author(s):  
Sebastian Kittelmann ◽  
Alexandra D. Buffry ◽  
Franziska A. Franke ◽  
Isabel Almudi ◽  
Marianne Yoth ◽  
...  

AbstractConvergent phenotypic evolution is often caused by recurrent changes at particular nodes in the underlying gene regulatory networks (GRNs). The genes at such evolutionary ‘hotspots’ are thought to maximally affect the phenotype with minimal pleiotropic consequences. This has led to the suggestion that if a GRN is understood in sufficient detail, the path of evolution may be predictable. The repeated evolutionary loss of larval trichomes among Drosophila species is caused by the loss of shavenbaby (svb) expression. svb is also required for development of leg trichomes, but the evolutionary gain of trichomes in the ‘naked valley’ on T2 femurs in Drosophila melanogaster is caused by the loss of microRNA-92a (miR-92a) expression rather than changes in svb. We compared the expression and function of components between the larval and leg trichome GRNs to investigate why the genetic basis of trichome pattern evolution differs in these developmental contexts. We found key differences between the two networks in both the genes employed, and in the regulation and function of common genes. These differences in the GRNs reveal why mutations in svb are unlikely to contribute to leg trichome evolution and how instead miR-92a represents the key evolutionary switch in this context. Our work shows that variability in GRNs across different developmental contexts, as well as whether a morphological feature is lost versus gained, influence the nodes at which a GRN evolves to cause morphological change. Therefore, our findings have important implications for understanding the pathways and predictability of evolution.Author SummaryA major goal of biology is to identify the genetic cause of organismal diversity. Convergent evolution of traits is often caused by changes in the same genes – evolutionary ‘hotspots’. shavenbaby is a ‘hotspot’ for larval trichome loss in Drosophila, however microRNA-92a underlies the gain of leg trichomes. To understand this difference in the genetics of phenotypic evolution, we compared the expression and function of genes in the underlying regulatory networks. We found that the pathway of evolution is influenced by differences in gene regulatory network architecture in different developmental contexts, as well as by whether a trait is lost or gained. Therefore, hotspots in one context may not readily evolve in a different context. This has important implications for understanding the genetic basis of phenotypic change and the predictability of evolution.


Paleobiology ◽  
2011 ◽  
Vol 37 (3) ◽  
pp. 445-469 ◽  
Author(s):  
Johan Lindgren ◽  
Michael J. Polcyn ◽  
Bruce A. Young

Incremental stages of major evolutionary transitions within a single animal lineage are rarely observed in the fossil record. However, the extraordinarily complete sequence of well preserved material spanning the 27-Myr existence of the marine squamate subfamily Mosasaurinae provides a unique exception. By comparison with extant and extinct analogs, the tail morphology of four mosasaurine genera is examined, revealing a pattern of evolution that begins with the generalized varanoid anatomy and culminates in a high-aspect-ratio fin, similar to that of sharks. However, unlike the epicercal caudal fluke of selachians in which the tail bends dorsocaudally, derived mosasaurs develop a hypocercal tail with a ventrocaudal bend. Progressive caudal regionalization, reduced intervertebral mobility, increased tail depth due to a marked downturn of the posterior caudal segment, and the development of finlike paired appendages reveal a pattern of adaptation toward an optimized marine existence. This change in morphology reflects a transition from anguilliform or sub-carangiform locomotion to carangiform locomotion, and indicates a progressive shift from nearshore dwellers to pelagic cruisers—a change in foraging habitat independently corroborated by paleobiogeographic, stable isotope, osteohistological, and paleopathological data. Evolutionary patterns similar to those observed in mosasaurine mosasaurs are seen in other secondarily aquatically adapted amniotes, notably metriorhynchid crocodyliforms, cetaceans, and ichthyosaurs, and may be explained by developmental modularity governing the observed phenotypic expression.


2010 ◽  
Vol 365 (1537) ◽  
pp. 99-109 ◽  
Author(s):  
Spencer C. H. Barrett

Flowering plants display spectacular floral diversity and a bewildering array of reproductive adaptations that promote mating, particularly outbreeding. A striking feature of this diversity is that related species often differ in pollination and mating systems, and intraspecific variation in sexual traits is not unusual, especially among herbaceous plants. This variation provides opportunities for evolutionary biologists to link micro-evolutionary processes to the macro-evolutionary patterns that are evident within lineages. Here, I provide some personal reflections on recent progress in our understanding of the ecology and evolution of plant reproductive diversity. I begin with a brief historical sketch of the major developments in this field and then focus on three of the most significant evolutionary transitions in the reproductive biology of flowering plants: the pathway from outcrossing to predominant self-fertilization, the origin of separate sexes (females and males) from hermaphroditism and the shift from animal pollination to wind pollination. For each evolutionary transition, I consider what we have discovered and some of the problems that still remain unsolved. I conclude by discussing how new approaches might influence future research in plant reproductive biology.


2011 ◽  
Vol 279 (1732) ◽  
pp. 1287-1292 ◽  
Author(s):  
Roi Holzman ◽  
David C. Collar ◽  
Samantha A. Price ◽  
C. Darrin Hulsey ◽  
Robert C. Thomson ◽  
...  

Morphological diversification does not proceed evenly across the organism. Some body parts tend to evolve at higher rates than others, and these rate biases are often attributed to sexual and natural selection or to genetic constraints. We hypothesized that variation in the rates of morphological evolution among body parts could also be related to the performance consequences of the functional systems that make up the body. Specifically, we tested the widely held expectation that the rate of evolution for a trait is negatively correlated with the strength of biomechanical trade-offs to which it is exposed. We quantified the magnitude of trade-offs acting on the morphological components of three feeding-related functional systems in four radiations of teleost fishes. After accounting for differences in the rates of morphological evolution between radiations, we found that traits that contribute more to performance trade-offs tend to evolve more rapidly, contrary to the prediction. While ecological and genetic factors are known to have strong effects on rates of phenotypic evolution, this study highlights the role of the biomechanical architecture of functional systems in biasing the rates and direction of trait evolution.


2016 ◽  
Vol 283 (1833) ◽  
pp. 20153026 ◽  
Author(s):  
Thomas John Dixon Halliday ◽  
Paul Upchurch ◽  
Anjali Goswami

The effect of the Cretaceous–Palaeogene (K–Pg) mass extinction on the evolution of many groups, including placental mammals, has been hotly debated. The fossil record suggests a sudden adaptive radiation of placentals immediately after the event, but several recent quantitative analyses have reconstructed no significant increase in either clade origination rates or rates of character evolution in the Palaeocene. Here we use stochastic methods to date a recent phylogenetic analysis of Cretaceous and Palaeocene mammals and show that Placentalia likely originated in the Late Cretaceous, but that most intraordinal diversification occurred during the earliest Palaeocene. This analysis reconstructs fewer than 10 placental mammal lineages crossing the K–Pg boundary. Moreover, we show that rates of morphological evolution in the 5 Myr interval immediately after the K–Pg mass extinction are three times higher than background rates during the Cretaceous. These results suggest that the K–Pg mass extinction had a marked impact on placental mammal diversification, supporting the view that an evolutionary radiation occurred as placental lineages invaded new ecological niches during the Early Palaeocene.


Author(s):  
Günter P. Wagner

This chapter explores variational structuralism, whose core idea is that organisms and their parts play causal roles in shaping the patterns of phenotypic evolution. Drawing on the work of pioneers such as Ron Amundson, it discusses the conceptual incompatibilities between two styles of thinking in evolutionary biology: functionalism and structuralism. It proceeds by explaining the meaning of developmental types and structuralist concepts arising from macromolecular studies. It also examines facts and ideas about bodies, Rupert Riedl's theory of the “immitatory epigenotype,” and Neil Shubin and Pere Alberch's developmental interpretation of tetrapod limbs. Finally, it looks at the emergence of molecular structuralism and the enigma of developmental variation. The chapter argues that typology naturally emerged from the facts of evolutionary developmental biology and that it would be seriously problematic to try to avoid it.


Genome ◽  
2020 ◽  
Vol 63 (6) ◽  
pp. 281-289
Author(s):  
Kelly Seto ◽  
Wendy Mok ◽  
Jonny Stone

Changes to promoter regions probably have been responsible for many morphological evolutionary transitions, especially in animals. This idea is becoming testable, as data from genome projects amass and enable bioinformaticians to conduct comparative sequence analyses and test for correlations between genotypic similarities or differences and phenotypic likeness or disparity. Although such practical pursuits have initiated some theoretical considerations, a conceptual framework for understanding promoter region evolution, potentially effecting morphological evolution, is only starting to emerge, predominantly resulting from computational research. We contribute to this framework by specifying three big problems for promoter region research; reviewing computational research on promoter region evolution; and exemplifying a topic for future promoter region research — module evolution.


Paleobiology ◽  
1999 ◽  
Vol 25 (3) ◽  
pp. 369-382 ◽  
Author(s):  
Sabrina Renaud ◽  
Mouloud Benammi ◽  
Jean-Jacques Jaeger

The North African murine rodent Paraethomys evolved as an anagenetic lineage from the late Miocene until its extinction in the late—middle Pleistocene. A Fourier analysis of the outlines of the first upper and lower molars of this rodent was used to quantify the evolutionary patterns of this lineage and to compare evolutionary patterns to the climatic record. Morphological evolution and long-term environmental variations are strongly correlated. A change in molar shape, which may be related to the development of a more grass-eating diet, corresponds to the global cooling beginning around 3 Ma and the subsequent increase in aridity in North Africa. Concurrently, size increased, which may be related to increased masticatory efficiency or to metabolic adaptation to the cooler environmental conditions according to Bergmann's rule. This adaptive response to changing environmental conditions corresponds to an acceleration of evolutionary rates in the lineage. The modalities of the evolutionary response in size and shape are probably controlled by intrinsic factors such as different genetic determinisms for both characters.


2002 ◽  
Vol 8 ◽  
pp. 267-288 ◽  
Author(s):  
Blaire Van Valkenburgh ◽  
Ian Jenkins

Synapsids include modern mammals and their fossil ancestors, the non-mammalian synapsids, or ‘mammal-like reptiles' of old classifications. The synapsid fossil record extends from the Late Carboniferous to the present, a span of nearly 300 million years. However, it can be broken into two distinct phases of diversification, separated by about 150 million years. The first phase extends from the Late Carboniferous to the mid-Triassic, includes the first large land predators on Earth, and is almost entirely non-mammalian. The second phase begins about 65 million years ago after the demise of the dinosaurs, includes only mammals, and extends to the present. In this overview of synapsid predators, we emphasize terrestrial species of large size, and their adaptations for killing and feeding, rather than locomotion. Despite fundamental differences in jaw mechanics and tooth morphology, there are significant parallels in the non-mammalian and mammalian radiations of synapsid predators. Both groups evolve sabertooth forms more than once, and both evolve short-snouted, powerful biting forms. In addition, both the Late Carboniferous—Triassic and Cenozoic phases are characterized by repeated patterns of clade replacement, in which one or a few clades evolve large size and seem to dominate the carnivore guild for several million years, but then decline and are replaced by new taxa. Moreover, within both ancient and Cenozoic predator clades, there are parallel trends over time toward increased body size and hypercarnivory that likely result from a combination of interspecific competition and energetic constraints.


Sign in / Sign up

Export Citation Format

Share Document