On the Genetic Etiology of Scurvy

1966 ◽  
Vol 15 (4) ◽  
pp. 345-350 ◽  
Author(s):  
Irwin Stone

SummaryScurvy, now regarded as a nutritional disorder due to the lack of the trace food constituent, vitamin C, is shown to be the end result of a typical genetic disease. This genetic disease syndrome has been namedHypoascorbemia. Its primary cause is the hereditary lack of — or defect in — the gene controlling the synthesis of the enzyme, L-gulonolactone oxidase. This is a mammalian liver enzyme, the last one in the series for converting glucose into ascorbic acid. Man is one of the few mammals that lacks this enzyme and hence is unable to sythesize his own ascorbic acid. The gene defect occurred during the course of evolution by a conditional lethal mutation. The replacement of the present vitamin C theory regarding the etiology of scurvy by this genetic concept gives important new viewpoints to the quantitative aspects of ascorbic acid in human physiology and also provides new rationales for the use of high levels of ascorbic acid in normal physiology and in the therapy of clinical entities other than scurvy.

2000 ◽  
Vol 22 (22) ◽  
pp. 103
Author(s):  
Maria Caroline Jacques da Silva

L-Ascorbic acid (AA) or vitamin C is a six carbon cetolactone, structurally related to glucose and other hexoses. The major sources of AA are citrus fruits, strawberry, melon, green pepper, potato, tomato and leafy green vegetables. AA interferes with a broad spectrum of oxidation-reduction reactions, acting in at least 10 enzymatic systems. In this way, vitamin C influences the synthesis of collagen, carnitine, and neurotransmitters; the transformation of cholesterol into bile acids; biotransformation of xenobiotics substances; absorption of iron; and formation and scavenging of oxygen free radicals. AA is used as food addictive because of its antioxidant properties.Therapeutically, it is used as nutritional supplement during scurvy. Human beings and other primates, as well as guinea pigs and some species of bats are mammals that are unable to synthesize AA; thus, they need AA in the diet to prevent scurvy. Rats are able to synthesize AA using glucose, through intermediary formation of D-glucuronic acid, L-gulonic acid and gulonolactone.Homo sapiens lack the hepatic enzyme gulonolactone oxidase, which catalyses the last reaction of the biosynthesis pathway (L-gulonolactone conversion to ascorbic acid). The functions of central nervous, immune, and cardiovascular systems, and the periodontal tissue, as well as the detoxification function of the liver, are negatively influenced by vitamin C deficiency. In this way, it has been described several benefits of vitamin supplement ingestion, as decreasing of LDL cholesterol, including mega doses that can reach as much as 18g daily. Although there have been raised many literatures about vitamin C use in a wide variety of diseases, there is a lack of clinical efficiency of mega doses; besides, some side effects can come up, as diarrhea and oxalate stones in the kidneys. However, the ideal daily intake of vitamin C is still unknown. This happen because the recommended daily intake is based in a single role of AA, the scurvy prevention. Daily ingestion of AA should be the same quantity excreted or destroyed by oxidation, taking into consideration AA actions on the enzymatic systems. Actually, vitamin C is necessary for health in little quantities and is harmful in large doses. It happens because the cells are always walking a balance between oxidation and reduction processes, and AA in great quantities assume oxidative characteristics, interfering in this balance. Although the existence of several evidences indicating AA toxicity in large doses, there are some authors who believe that the ingestion of large doses is safe, but they admit that the disposable data are very contradictory.


1967 ◽  
Vol 16 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Irwin Stone

SummaryIt has been recently shown that the human requirement for exogenous ascorbic acid and the disease, scurvy, are the result of a typical genetic disease syndrome caused by a defect on the gene controlling the synthesis of the enzyme protein, L-gulonolactone oxidase. The lack of this active enzyme in the human liver prevents Man from producing his own ascorbic acid; a synthesis which is regularly carried out by nearly all other mammals. This genetic disease has been named, Hypoascorbemia. This new concept of the genetic etiology of scurvy gives a much broader outlook and opens perspectives which were lacking in the previous fifty year old nutritional or trace “vitamin C” hypothesis. “Correction” of this genetic defect in Man is now possible since the availability of ascorbic acid in large quantities. By “correction” is meant the long-term administration of ascorbic acid in the large amounts the human liver would be synthesizing had this genetic defect not occurred. The mammals have long used the increased liver biosynthesis of ascorbic acid, under stress, to maintain homeostasis. The genetic defect prevents Humans from utilizing this important mammalian biochemical protective mechanism. Supplying exogenous ascorbic acid at the proper high dosage for full “correction” is merely duplicating a normal mammalian reaction. The medical implications of the full “correction” of this genetic disease are discussed and speculations on the effects of “correction” in the rheumatoid diseases, cardiovascular conditions, strokes, cancer and the aging process are extrapolated from the meager data already in the medical literature. This paper is mainly a plea for more thought along the medical possibilities opened by this new concept and for more clinical tests based on the rationales derived from the genetic disease viewpoint.


2019 ◽  
pp. 1-6
Author(s):  
Mohammad Rahanur Alam ◽  
Mohammad Asadul Habib ◽  
Pinaki Chowdhury ◽  
Lincon Chandra Shill ◽  
Abdullah Al Mamun

Aim: Ascorbic acid (vitamin C) is the most important food constituent because of its antioxidant and functional activity. The study aims to determine the Vitamin C content in commercially available fruit drinks collected from selected shops in Bangladesh. Study Design: This study is an experimental study.  Place and Duration of Study: The present study was conducted in the food analysis laboratory of Department Food Technology and Nutrition Science, Noakhali Science and Technology University, from January 2019 to May 2019. In the present study, a total of 22 branded different fruit drinks samples (orange, mango, lichi) were collected from the local market of Noakhali, Bangladesh. Methodology: Vitamin C was analyzed with the titrimetric method and Sugar content, pH was also successfully determined by refractometer, pH meter respectively. Results: The analyzed Vitamin C was found in the range of 2.96 to 70 mg/100 ml. Sugar content, pH was also successfully determined from the samples. The majority of the samples were found less in vitamin C concentration while only two samples (samples 3, 18) were found high the vitamin C concentration. Conclusion: From the above study, titrimetric analysis proves itself as a scientific method in the determination of vitamin C concentration in the samples.


1979 ◽  
Vol 44 (11) ◽  
pp. 3395-3404 ◽  
Author(s):  
Pavel Posádka ◽  
Lumír Macholán

An oxygen electrode of the Clark type, coated by a thin, active layer of chemically insolubilized ascorbate oxidase from squash peelings specifically detects by measuring oxygen uptake 10 to 400 μg of ascorbic acid in 3 ml of phosphate buffer. The record of current response to substrate addition lasts 1-2 min. The ascorbic acid values determined in various samples of fruit juices are in good agreement with the data obtained by titration and polarography. The suitable composition of the membrane and its lifetime and stability during long-term storage are described; optimal reaction conditions of vitamin C determination and the possibilities of interference of other compounds are also examined. Of the 35 phenols, aromatic amines and acids tested chlorogenic acid only can cause a positive error provided that the enzyme membrane has been prepared from ascorbate oxidase of high purity.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 55
Author(s):  
Alina Soceanu ◽  
Nicoleta Matei ◽  
Simona Dobrinas ◽  
Viorica Popescu

Vitamin C or ascorbic acid is a basic nutrient, a highly effective antioxidant, widely used as food additive. Therefore, quality control in food industry demands ascorbic acid determination methods. The purpose of this study was to determine vitamin C in natural orange juices by spectrometric and voltammetric methods. Another goal was to determine the kinetic and thermodynamics activation parameters for ascorbic acid degradation in orange juices over time and at different temperatures. It was observed that during storage, ascorbic acid concentrations in orange juices were gradually decreased with time at a rate depending on storage temperature and type of orange juice. The reaction order was determined through integrated graphical analysis where the dependences of ln ct/c0 as a function of time reveals the high values for R2, indicating that the kinetics of the degradation of AA follows first order reaction at both studied temperatures. For studied samples the loss of ascorbic acid was varied between 4.33% and 9.13%. Enthalpy variation (ΔH) and entropy variation (ΔS) of activation process were obtained from the Eyring–Polany model based on transition state theory. The values of activation energy ranged between 7289.24 kJmol−1 and 15689.54 kJmol−1.


Sign in / Sign up

Export Citation Format

Share Document