Regression Model for the 22-year Hale Solar Cycle Derived from High Altitude Tree-ring Data

1994 ◽  
Vol 11 (2) ◽  
pp. 157-163 ◽  
Author(s):  
J. O. Murphy ◽  
H. Sampson ◽  
T. T. Veblen ◽  
R. Villalba

AbstractInitially some simple analytical properties based on the annual Zürich relative sunspot number are established for the 22-year Hale solar magnetic cycle. Since about AD1850, successive maximum sunspot numbers in a Hale cycle are highly correlated. Also, a regression model for the reconstruction of the 22-year Hale cycle has been formulated from proxy tree-ring data, obtained from spruce trees growing at a high altitude site in White River National Forest in Colorado. Over a considerable fraction of the past 300 years to AD1986, the ring-index time series power spectrum exhibits a strong 22-year periodicity, and more recently a significant spectral peak (at the 95% confidence level) at approximately 11 years. The model shows that the greatest variation in ‘amplitude’ in the magnetic cycle occurs over the early decades of the eighteenth century, when the sample size is small. Thereafter, a nearly constant amplitude is maintained until about AD1880 when a break occurs in both phase correspondence and amplitude, extending over the next three cycles. From AD1950 the signal recovers phase with the solar cycle, with reduced but increasing amplitude.

Radiocarbon ◽  
2019 ◽  
Vol 61 (5) ◽  
pp. 1305-1316 ◽  
Author(s):  
Ronny Friedrich ◽  
Bernd Kromer ◽  
Frank Sirocko ◽  
Jan Esper ◽  
Susanne Lindauer ◽  
...  

ABSTRACTTwo tree-ring series, one from a high-latitude pine tree (located in northern Scandinavia) and one from a mid-latitude oak tree (located in eastern Germany) were analyzed for radiocarbon (14C) at annual resolution. The new records cover the calendar date ranges 290–460 AD and 382–486 AD, respectively, overlapping by 79 yr. The series show similar trends as IntCal13. However, some significant deviations around 400 AD are present with lower Δ14C (higher 14C ages). An average offset between the two new series and IntCal13 of about 20 years in conventional 14C age is observed. A latitudinal 14C offset between the tree sites in central and northern Europe, as would be expected due to the relatively large spatial distance, is not recorded, however. Periodic changes in the 14C records are resolved that can be attributed to the “11-year” solar cycle (Schwabe cycle) with cycle length from 9 to 11 years. The magnitude of changes in Δ14C due to the solar cycle is between 1.5 and 3‰. Since solar cyclicity is only partially synchronous between the two new series, reasons for asynchronicity are explored.


1998 ◽  
Vol 28 (12) ◽  
pp. 1832-1842 ◽  
Author(s):  
Louise Filion ◽  
Serge Payette ◽  
Ann Delwaide ◽  
Najat Bhiry

Tree-ring data from a mature balsam fir forest, located at the top of Mount Mégantic (elevation 1100 m), southern Quebec, suggest that insect defoliators were major disturbance factors in the development of high-altitude balsam fir forests. A comparison between the radial growth trend of balsam fir (Abies balsamea (L.) Mill.), a host species of the spruce budworm (Choristoneura fumiferana Clem.), and paper birch (Betula papyrifera Marsh), a nonhost species, showed that several growth depressions in the balsam fir chronology corrresponded to documented spruce budworm outbreaks in southern Quebec in the 1910s, 1950s, 1970s, and possibly in the 1870s. Tree mortality was extensive during the last infestation because of the relatively old age (>60 years) of many balsam fir and, possibly, to the cumulative impact of defoliation. The tree-ring series from paper birch showed several drops in radial growth after the 1930s, possibly related to the large-scale birch dieback that occurred in eastern North America. Macrofossil data (insect remains) from one sample of the uppermost organic soil layers (F horizon) confirm the presence of the spruce budworm at the study site. The ecological role of insect defoliators is discussed in the context of the high-altitude balsam fir forests in northeastern North America where abiotic disturbances are considered the primary controlling factors in stand dynamics.


2006 ◽  
Vol 2 (14) ◽  
pp. 271-272
Author(s):  
Alexander G. Kosovichev ◽  
Klaus G. Strassmeier

The solar magnetic field and its associated atmospheric activity exhibits periodic variations on a number of time scales. The 11-year sunspot cycle and its underlying 22-year magnetic cycle are, besides the 5-minute oscillation, the most widely known. Amplitudes and periods range from a few parts per million (ppm) and 2–3 minutes for p-modes in sunspots, a few 10 ppm and 10 minutes for the granulation turn around, a few 100 ppm and weeks for the lifetime of plages and faculae, 1000 ppm and 27 days for the rotational signal from spots, to the long-term cycles of 90 yr (Gleissberg cycle), 200 - 300 yr (Wolf, Spörer, Maunder minima), 2,400 yr from 14C tree-ring data, and possibly in excess of 100,000 yr.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2139
Author(s):  
Paul H. Hutton ◽  
David M. Meko ◽  
Sujoy B. Roy

This work presents updated reconstructions of watershed runoff to San Francisco Estuary from tree-ring data to AD 903, coupled with models relating runoff to freshwater flow to the estuary and salinity intrusion. We characterize pre-development freshwater flow and salinity conditions in the estuary over the past millennium and compare this characterization with contemporary conditions to better understand the magnitude and seasonality of changes over this time. This work shows that the instrumented flow record spans the range of runoff patterns over the past millennium (averaged over 5, 10, 20 and 100 years), and thus serves as a reasonable basis for planning-level evaluations of historical hydrologic conditions in the estuary. Over annual timescales we show that, although median freshwater flow to the estuary has not changed significantly, it has been more variable over the past century compared to pre-development flow conditions. We further show that the contemporary period is generally associated with greater spring salinity intrusion and lesser summer–fall salinity intrusion relative to the pre-development period. Thus, salinity intrusion in summer and fall months was a common occurrence under pre-development conditions and has been moderated in the contemporary period due to the operations of upstream reservoirs, which were designed to hold winter and spring runoff for release in summer and fall. This work also confirms a dramatic decadal-scale hydrologic shift in the watershed from very wet to very dry conditions during the late 19th and early 20th centuries; while not unprecedented, these shifts have been seen only a few times in the past millennium. This shift resulted in an increase in salinity intrusion in the first three decades of the 20th century, as documented through early records. Population growth and extensive watershed modification during this period exacerbated this underlying hydrologic shift. Putting this shift in the context of other anthropogenic drivers is important in understanding the historical response of the estuary and in setting salinity targets for estuarine restoration. By characterizing the long-term behavior of San Francisco Estuary, this work supports decision-making in the State of California related to flow and salinity management for restoration of the estuarine ecosystem.


Radiocarbon ◽  
2004 ◽  
Vol 46 (3) ◽  
pp. 1161-1187 ◽  
Author(s):  
Konrad A Hughen ◽  
John R Southon ◽  
Chanda J H Bertrand ◽  
Brian Frantz ◽  
Paula Zermeño

This paper describes the methods used to develop the Cariaco Basin PL07-58PC marine radiocarbon calibration data set. Background measurements are provided for the period when Cariaco samples were run, as well as revisions leading to the most recent version of the floating varve chronology. The floating Cariaco chronology has been anchored to an updated and expanded Preboreal pine tree-ring data set, with better estimates of uncertainty in the wiggle-match. Pending any further changes to the dendrochronology, these results represent the final Cariaco 58PC calibration data set.


2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


2013 ◽  
Vol 726-731 ◽  
pp. 4709-4713
Author(s):  
Lin Jing Zhang ◽  
Hong Zhang Ma ◽  
Zhu Bo Zhou ◽  
Zhong Liang Ren ◽  
Xiao Bo Zhu ◽  
...  

Based on the physical models of PROSPECT, SAIL and porosity model, hyperspectral data and canopy coverage data of different combined scenes were simulated. According to the simulated data, we chose four sensitive bands and four sensitive vegetation indexes highly correlated to vegetation canopy coverage, and analyzed the correlation between sensitive bands, sensitive vegetation indexes and canopy coverage. Then we built a regression model of canopy coverage with EVI highly correlated with canopy coverage. At last, we verified this model by experimental data from ground measurement experiment. It shows that there is a high correlation between EVI and canopy coverage and the regression model built by EVI can produce an effective result and the RMSE is less than 0.09.


2021 ◽  
Author(s):  
Jonathan Barichivich ◽  
Philippe Peylin ◽  
Valérie Daux ◽  
Camille Risi ◽  
Jina Jeong ◽  
...  

<p>Gradual anthropogenic warming and parallel changes in the major global biogeochemical cycles are slowly pushing forest ecosystems into novel growing conditions, with uncertain consequences for ecosystem dynamics and climate. Short-term forest responses (i.e., years to a decade) to global change factors are relatively well understood and skilfully simulated by land surface models (LSMs). However, confidence on model projections weaken towards longer time scales and to the future, mainly because the long-term responses (i.e., decade to century) of these models remain unconstrained. This issue limits confidence on climate model projections. Annually-resolved tree-ring records, extending back to pre-industrial conditions, have the potential to constrain model responses at interannual to centennial time scales. Here, we constrain the representation of tree growth and physiology in the ORCHIDEE global land surface model using the simulated interannual variability of tree-ring width and carbon (Δ<sup>13</sup>C) and oxygen (δ<sup>18</sup>O) stable isotopes in six sites in boreal and temperate Europe.  The model simulates Δ<sup>13</sup>C (r = 0.31-0.80) and δ<sup>18</sup>O (r = 0.36-0.74) variability better than tree-ring width variability (r < 0.55), with an overall skill similar to that of other state-of-the-art models such as MAIDENiso and LPX-Bern. These results show that growth variability is not well represented, and that the parameterization of leaf-level physiological responses to drought stress in the temperate region can be improved with tree-ring data. The representation of carbon storage and remobilization dynamics is critical to improve the realism of simulated growth variability, temporal carrying over and recovery of forest ecosystems after climate extremes. The simulated physiological response to rising CO2 over the 20th century is consistent with tree-ring data in the temperate region, despite an overestimation of seasonal drought stress and stomatal control on photosynthesis. Photosynthesis correlates directly with isotopic variability, but correlations with δ<sup>18</sup>O combine physiological effects and climate variability impacts on source water signatures. The integration of tree-ring data (i.e. the triple constraint: width, Δ<sup>13</sup>C and δ<sup>18</sup>O) and land surface models as demonstrated here should contribute towards reducing current uncertainties in forest carbon and water cycling.</p>


2016 ◽  
Vol 12 (7) ◽  
pp. 1485-1498 ◽  
Author(s):  
Liangjun Zhu ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
Binde Guo ◽  
Xiaochun Wang

Abstract. We present a reconstruction of July–August mean maximum temperature variability based on a chronology of tree-ring widths over the period AD 1646–2013 in the northern part of the northwestern Sichuan Plateau (NWSP), China. A regression model explains 37.1 % of the variance of July–August mean maximum temperature during the calibration period from 1954 to 2012. Compared with nearby temperature reconstructions and gridded land surface temperature data, our temperature reconstruction had high spatial representativeness. Seven major cold periods were identified (1708–1711, 1765–1769, 1818–1821, 1824–1828, 1832–1836, 1839–1842, and 1869–1877), and three major warm periods occurred in 1655–1668, 1719–1730, and 1858–1859 from this reconstruction. The typical Little Ice Age climate can also be well represented in our reconstruction and clearly ended with climatic amelioration at the late of the 19th century. The 17th and 19th centuries were cold with more extreme cold years, while the 18th and 20th centuries were warm with less extreme cold years. Moreover, the 20th century rapid warming was not obvious in the NWSP mean maximum temperature reconstruction, which implied that mean maximum temperature might play an important and different role in global change as unique temperature indicators. Multi-taper method (MTM) spectral analysis revealed significant periodicities of 170-, 49–114-, 25–32-, 5.7-, 4.6–4.7-, 3.0–3.1-, 2.5-, and 2.1–2.3-year quasi-cycles at a 95 % confidence level in our reconstruction. Overall, the mean maximum temperature variability in the NWSP may be associated with global land–sea atmospheric circulation (e.g., ENSO, PDO, or AMO) as well as solar and volcanic forcing.


Sign in / Sign up

Export Citation Format

Share Document