scholarly journals Superior Memory and Higher Cortical Volumes in Unusually Successful Cognitive Aging

2012 ◽  
Vol 18 (6) ◽  
pp. 1081-1085 ◽  
Author(s):  
Theresa M. Harrison ◽  
Sandra Weintraub ◽  
M.-Marsel Mesulam ◽  
Emily Rogalski

AbstractIt is “normal” for old age to be associated with gradual decline in memory and brain mass. However, there are anecdotal reports of individuals who seem immune to age-related memory impairment, but these individuals have not been studied systematically. This study sought to establish that such cognitive SuperAgers exist and to determine if they were also resistant to age-related loss of cortical brain volume. SuperAgers were defined as individuals over age 80 with episodic memory performance at least as good as normative values for 50- to 65-year-olds. Cortical morphometry of the SuperAgers was compared to two cognitively normal cohorts: age-matched elderly and 50- to 65-year-olds. The SuperAgers’ cerebral cortex was significantly thicker than their healthy age-matched peers and displayed no atrophy compared to the 50- to 65-year-old healthy group. Unexpectedly, a region of left anterior cingulate cortex was significantly thicker in the SuperAgers than in both elderly and middle-aged controls. Our findings identify cognitive and neuroanatomical features of a cohort that appears to resist average age-related changes of memory capacity and cortical volume. A better understanding of the underlying factors promoting this potential trajectory of unusually successful aging may provide insight for preventing age-related cognitive impairments or the more severe changes associated with Alzheimer's disease. (JINS, 2012, 18, 1–5)

2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2021 ◽  
Author(s):  
Tamar Gefen ◽  
Allegra Kawles ◽  
Beth Makowski-Woidan ◽  
Janessa Engelmeyer ◽  
Ivan Ayala ◽  
...  

Abstract Advancing age is typically associated with declining memory capacity and increased risk of Alzheimer’s disease (AD). Markers of AD such as amyloid plaques (AP) and neurofibrillary tangles (NFTs) are commonly found in the brains of cognitively average elderly but in more limited distribution than in those at the mild cognitive impairment and dementia stages of AD. Cognitive SuperAgers are individuals over age 80 who show superior memory capacity, at a level consistent with individuals 20–30 years their junior. Using a stereological approach, the current study quantitated the presence of AD markers in the memory-associated entorhinal cortex (ERC) of seven SuperAgers compared with six age-matched cognitively average normal control individuals. Amyloid plaques and NFTs were visualized using Thioflavin-S histofluorescence, 6E10, and PHF-1 immunohistochemistry. Unbiased stereological analysis revealed significantly more NFTs in ERC in cognitively average normal controls compared with SuperAgers (P < 0.05) by a difference of ~3-fold. There were no significant differences in plaque density. To highlight relative magnitude, cases with typical amnestic dementia of AD showed nearly 100 times more entorhinal NFTs than SuperAgers. The results suggest that resistance to age-related neurofibrillary degeneration in the ERC may be one factor contributing to preserved memory in SuperAgers.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1611
Author(s):  
Nur Fathiah Abdul Abdul Sani ◽  
Ahmad Imran Zaydi Amir Amir Hamzah ◽  
Zulzikry Hafiz Abu Abu Bakar ◽  
Yasmin Anum Mohd Mohd Yusof ◽  
Suzana Makpol ◽  
...  

The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult’s susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.


2020 ◽  
Author(s):  
Sabina Srokova ◽  
Paul F. Hill ◽  
Joshua D. Koen ◽  
Danielle R. King ◽  
Michael D. Rugg

AbstractThe aging brain is characterized by neural dedifferentiation – an apparent decrease in the functional selectivity of category-selective cortical regions. Age-related reductions in neural differentiation have been proposed to play a causal role in cognitive aging. Recent findings suggest, however, that age-related dedifferentiation is not equally evident for all stimulus categories and, additionally, that the relationship between neural differentiation and cognitive performance is not moderated by age. In light of these findings, in the present experiment younger and older human adults (males and females) underwent fMRI as they studied words paired with images of scenes or faces prior to a subsequent memory task. Neural selectivity was measured in two scene-selective (parahippocampal place area and retrosplenial cortex) and two face-selective (fusiform and occipital face areas) regions of interest using both a univariate differentiation index and multivoxel pattern similarity analysis. Both methods provided highly convergent results which revealed evidence of age-related reductions in neural dedifferentiation in scene-selective but not face-selective cortical regions. Additionally, neural differentiation in the parahippocampal place area demonstrated a positive, age-invariant relationship with subsequent source memory performance (recall of the image category paired with each recognized test word). These findings extend prior findings suggesting that age-related neural dedifferentiation is not a ubiquitous phenomenon, and that the specificity of neural responses to scenes is predictive subsequent memory performance independently of age.Significance StatementIncreasing age is associated with reduced neural specificity in cortical regions that are selectively responsive to a given perceptual stimulus category (age-related neural dedifferentiation), a phenomenon which has been proposed to contribute to cognitive aging. Recent findings reveal that age-related neural dedifferentiation is not present for all types of visual stimulus categories, and the factors which determine when the phenomenon arises remain unclear. Here, we demonstrate that scene- but not face-selective cortical regions exhibit age-related neural dedifferentiation during an attentionally-demanding task. Additionally, we report that higher neural selectivity in the scene-selective ‘parahippocampal place area’ is associated with better memory performance after controlling for variance associated with age group, adding to evidence that neural differentiation impacts cognition across the adult lifespan.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S651-S651
Author(s):  
Oliver K Schilling

Abstract Research on the association of alcohol consumption with cognitive aging revealed mixed evidence: Whereas a u-shaped relationship has been found in many studies, suggesting that low to moderate alcohol consumption predicts more favorable cognitive outcomes than abstinence, other findings suggest that alcohol is a more linearly related risk factor for cognitive decline. These inconsistencies may partly be due to methodological variation in the statistical modeling of intraindividual changes in both, alcohol consumption and cognition across old age. The present study analyzed longitudinal change in and the mutual effects between alcohol consumption habits and verbal episodic memory (word list recall), using vector autoregressive (VAR) mixed models with nonlinear cross-lagged effects. Data from the English Longitudinal Study of Ageing was examined, including N=13388 aged 50+ (M=67.6, SD=9.25; 54.7% female), assessed at up to eight occasions with two-year follow-up intervals (2002/3–2016/17). The self-reported one-year frequency of alcohol drinking days (ADD) served as indicator of alcohol consumption. Basically, ADD predicted follow-up memory performance in a reverse u-shaped fashion, indicating best memory performance after moderate ADD, compared with both ends of the ADD continuum (i.e., drinking never vs. every day). Considering moderators, most notably age did not interact with cross-lagged effects, suggesting that those observed across an older age-range were not more (or less) vulnerable to effects of alcohol consumption on memory performance. Thus, this study adds further support for non-detrimental, if not beneficial, effects of moderate alcohol consumption on cognitive aging – regarding in particular age-related loss of episodic memory.


2019 ◽  
Vol 34 (6) ◽  
pp. 1053-1053
Author(s):  
M Gonzalez Catalan ◽  
C Lindbergh ◽  
A Staffaroni ◽  
S Walters ◽  
K Casaletto ◽  
...  

Abstract Objective Cross-sectional studies have shown age-related differences in working memory (WM), but the trajectory is unclear due to the scarcity of longitudinal studies. Additional research is needed to better characterize the course of age-related changes in WM in older adults. The present study sought to address this gap in the literature by conducting serial assessments of WM in a longitudinally followed cohort of typically aging adults. We hypothesized a significant age × time interaction, such that WM would show pronounced declines with advancing age. Methods 640 functionally intact participants in an aging cohort (clinical dementia rating = 0; age range 52-99, mean age = 75) completed a computerized WM measure, Running Letter Memory (RLM), every ~15 months for up to 8.5 years (mean follow-up = 1.9 years). Longitudinal changes in RLM scores were analyzed using linear mixed effects models, allowing for random slopes and intercepts. All models were adjusted for sex and education. Results RLM performance did not significantly decline over time (b = -.14, p = .43). As hypothesized, there was a significant age × time interaction predicting RLM scores (b = -.08, p = .006). Specifically, RLM performance remained relatively stable (or slightly improved) until around age 75, beyond which increasingly precipitous declines were observed with advancing age. Conclusion The present results suggest that WM performance does not evidence declines until the mid-70s in typically aging adults, at which point increasingly steep decline trajectories are observed with advancing age. These findings highlight that cognitive aging does not occur at a constant rate in late life.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
José V Pardo ◽  
Shantal M Nyabwari ◽  
Joel T Lee ◽  

Abstract The anterior cingulate cortex (ACC) shows the most aging-related brain metabolic dysfunction that correlates with decreasing executive processing in otherwise healthy, cognitively intact volunteers. Here, data from ADNI are used to elucidate potential pathophysiological mechanisms involved in cognitive aging, that is, age-related decline in cognitive performance in the absence of known neurodegenerative disease. Amyloid-negative volunteers showed statistically significant mediation of ACC metabolism in the relationship between age and verbal fluency. A nonlinguistic task of executive function, Trails B, showed also negative correlation between performance and age, albeit weaker, but was not significant in the mediation analysis. Recall of story items, minimizing attentional demands compared with learning of word lists, did not correlate with age. ADNI subjects selected for low vascular risks also showed correlation between age and declining ACC metabolism. In the whole-brain amyloid-negative subset, ACC amyloid was not correlated with age. As expected, the metabolism in an arbitrary region such as motor cortex that was not expected to decline with cognitive aging showed no correlation with age or ACC metabolism suggesting regional specificity. These findings motivate the search for the pathophysiology of aging-related ACC dysfunction to prevent, diagnose, and treat the decline in executive function associated with cognitive aging.


2014 ◽  
Vol 35 (5) ◽  
pp. 857-894 ◽  
Author(s):  
SHARI BAUM ◽  
DEBRA TITONE

ABSTRACTNormal aging is an inevitable race between increasing knowledge and decreasing cognitive capacity. Crucial to understanding and promoting successful aging is determining which of these factors dominates for particular neurocognitive functions. Here, we focus on the human capacity for language, for which healthy older adults are simultaneously advantaged and disadvantaged. In recent years, a more hopeful view of cognitive aging has emerged from work suggesting that age-related declines in executive control functions are buffered by life-long bilingualism. In this paper, we selectively review what is currently known and unknown about bilingualism, executive control, and aging. Our ultimate goal is to advance the views that these issues should be reframed as a specific instance of neuroplasticity more generally and, in particular, that researchers should embrace the individual variability among bilinguals by adopting experimental and statistical approaches that respect the complexity of the questions addressed. In what follows, we set out the theoretical assumptions and empirical support of the bilingual advantages perspective, review what we know about language, cognitive control, and aging generally, and then highlight several of the relatively few studies that have investigated bilingual language processing in older adults, either on their own or in comparison with monolingual older adults. We conclude with several recommendations for how the field ought to proceed to achieve a more multifactorial view of bilingualism that emphasizes the notion of neuroplasticity over that of simple bilingual versus monolingual group comparisons.


2020 ◽  
Vol 48 (7) ◽  
pp. 1196-1213
Author(s):  
Alicia Forsberg ◽  
Wendy Johnson ◽  
Robert H. Logie

Abstract The decline of working memory (WM) is a common feature of general cognitive decline, and visual and verbal WM capacity appear to decline at different rates with age. Visual material may be remembered via verbal codes or visual traces, or both. Souza and Skóra, Cognition, 166, 277–297 (2017) found that labeling boosted memory in younger adults by activating categorical visual long-term memory (LTM) knowledge. Here, we replicated this and tested whether it held in healthy older adults. We compared performance in silence, under instructed overt labeling (participants were asked to say color names out loud), and articulatory suppression (repeating irrelevant syllables to prevent labeling) in the delayed estimation paradigm. Overt labeling improved memory performance in both age groups. However, comparing the effect of overt labeling and suppression on the number of coarse, categorical representations in the two age groups suggested that older adults used verbal labels subvocally more than younger adults, when performing the task in silence. Older adults also appeared to benefit from labels differently than younger adults. In younger adults labeling appeared to improve visual, continuous memory, suggesting that labels activated visual LTM representations. However, for older adults, labels did not appear to enhance visual, continuous representations, but instead boosted memory via additional verbal (categorical) memory traces. These results challenged the assumption that visual memory paradigms measure the same cognitive ability in younger and older adults, and highlighted the importance of controlling differences in age-related strategic preferences in visual memory tasks.


2017 ◽  
Author(s):  
Dilip Jeste ◽  
Jeanne Maglione

The number of older adults in our society is increasing rapidly. Aging is complex and may occur at varying rates across multiple domains, including biological aging, cognitive aging, and emotional aging. Age-related medical conditions are now among the leading causes of morbidity and mortality among older adults, making healthy aging a major public health priority. Successful aging encompasses more than longevity, medical health, or freedom from disability. It can be viewed as a multidimensional construct including minimization of disability and medical illness combined with maximization of physical, cognitive, emotional, and social functioning. We review the current literature regarding successful aging. We also discuss strategies to improve the likelihood of successful aging and several key advances, such as definitions of successful aging in different populations, neuroplasticity of aging, wisdom as an empirical construct, the concept of a good (or successful) death, and the development of age-friendly communities.  This review contains 3 figures, 5 tables, and 53 references. Key words: aging, elderly, older adult, successful aging, successful aging interventions


Sign in / Sign up

Export Citation Format

Share Document