Adaptations in muscle fibre characteristics induced by physical activity in pigs

1998 ◽  
Vol 66 (3) ◽  
pp. 733-740 ◽  
Author(s):  
J. S. Petersen ◽  
P. Henckel ◽  
N. Oksbjerg ◽  
M. T. Sørensen

AbstractThe influence of regular exercise training and physical activity on distribution of muscle fibre types, fibre cross-sectional areas and the number of adjacent capillaries per fibre type and per fibre (capillarization) was studied in five muscles from 48 female and 48 entire male pigs. In the growth interval from 30 to 100 kg, the pigs were subjected to one of three treatments: individual housing in pens of 2·5 m2 (treatment C), individual housing and treadmill training for 15 minlday at a speed of 4 kmlh, 5 days/week for a period of 70 days (treatment T), and housing in large pens (36 m2, 40 pigs per pen) allowing for spontaneous physical activity (treatment F). In m. longissimus dorsi, treatment F increased the ratio of fast-twitch oxidative (FTa-) to fast twitch glycolytic (FTb-) fibres, elevated the mean fibre cross-sectional area and the number of capillaries per fibre. In m. biceps femoris (BF) from female pigs, the only adaptation found was a marked training-induced (treatment T) increase in the cross-sectional area of the slow-twitch (ST-) fibres. In m. semitendinosus and BF from male pigs, treatments T and F increased the ratio of FTa- to FTb-fibres. Both training and spontaneous activity increased the proportion of ST-fibres in m. trapezius thoracis (0·48 in treatment C, 0·53 in T and 0·52 in F). Conversely in m. psoas major, treatment F increased the proportion of FTa-fibres (0·15 in C and 0·19 in F) at the expense of ST- and intermediate FTc-fibres. Spontaneous activity induced ST-fibre hypertrophy in the five muscles. For several muscles, the mean fibre cross-sectional area was significantly higher in female than in male pigs.

1978 ◽  
Vol 44 (3) ◽  
pp. 431-437 ◽  
Author(s):  
L. C. Maxwell ◽  
J. A. Faulkner ◽  
S. A. Mufti ◽  
A. M. Turowski

Fifty extensor digitorium longus muscles of 25 cats were autografted, 33 with and 17 without prior denervation. After 50 days, no significant differences were observed between predenervated and nonpredenervated autografts. Autografted muscles weighed 48% of the weight of control muscles. Few original muscle fibers survived and within 2 wk autografts contained regenerating muscle fibers. The mean cross-sectional area of muscle fibers in the autografts reached 125% of the value for control nontransplanted muscles. The mean percentage of fibers classified high oxidative in autografted muscles was 67% of values for control muscles. SDH activity of autografted muscle homogenates reached 55% of control values. Up to 60 days after surgery autografts had only fast-twitch fibers. At 170 days autografts remained 95% fast twitch in composition. Revascularization began within 4 days, but the capillary to fiber ratio of long term autografts reached only 60% of control values. Although fiber hypertrophy suggests that cats use autografted muscles, lower than control succinate dehydrogenase activity may result from altered recruitment.


1996 ◽  
Vol 5 (6) ◽  
pp. 593-600 ◽  
Author(s):  
Marita Ruusunen ◽  
Marja-Liisa Sevon-Aimonen ◽  
Eero Puolanne

The muscle fibre-type properties of longissimus were compared between Landrace and Yorkshire breeds and between the sexes in an attempt to shed light on the relationship of these histochemical parameters to animal growth and carcass composition. Muscle fibres were classified into three groups, type I, type lIA and type 11B, using the myosin ATPase method. At a given live weight, the cross-sectional area of type I fibres (CSA1) was smaller (p


2020 ◽  
Vol 16 (5) ◽  
pp. 377-385
Author(s):  
W. Isobe ◽  
S. Murakami ◽  
T. Saito ◽  
S. Kumagai ◽  
M. Sakita

Aging and physical inactivity lead to histochemical changes in muscles. The expression of many muscle proteins, including brain-derived neurotrophic factor (BDNF), silent information regulator of transcription 1 (SIRT1), and peroxisome proliferator-activated receptor γγ coactivator-1α (PGC-1a), declines with age. However, the effect of aerobic exercise on muscle structure and the expression profile of these proteins in elderly rats is unknown. Here, we investigated whether short-term aerobic exercise improves muscle structure and increases BDNF, SIRT1, and PGC-1a levels in aged rats. Ten male Wistar rats (95-week-old) were assigned to sedentary (SED) or exercise (Ex) groups. The Ex group performed running on a treadmill for 1 h, 6 times per week, for 2 weeks. The extensor digitorum longus muscles were removed to examine the muscle fibre type composition, cross-sectional area, and capillary-to-fibre (C/F) ratio. BDNF, SIRT1, and PGC-1a levels were evaluated by western blotting. Relative to the SED group, the Ex group showed increased proportion of Type I fibres (P<0.05), cross-sectional area of all muscle fibre types (P<0.05), succinate dehydrogenase activity (P<0.001), C/F ratio (P<0.05), and expression of BDNF, SIRT1, and PGC-1a (P<0.05).Thus, 2 weeks of aerobic exercise is sufficient to improve muscle histology and hypertrophic marker protein expression, indicating that it could prevent skeletal muscle atrophy in elderly rats.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gernot Seppel ◽  
Andreas Voss ◽  
Daniel J. H. Henderson ◽  
Simone Waldt ◽  
Bernhard Haller ◽  
...  

Abstract Background While supraspinatus atrophy can be described according to the system of Zanetti or Thomazeau there is still a lack of characterization of isolated subscapularis muscle atrophy. The aim of this study was to describe patterns of muscle atrophy following repair of isolated subscapularis (SSC) tendon. Methods Forty-nine control shoulder MRI scans, without rotator cuff pathology, atrophy or fatty infiltration, were prospectively evaluated and subscapularis diameters as well as cross sectional areas (complete and upper half) were assessed in a standardized oblique sagittal plane. Calculation of the ratio between the upper half of the cross sectional area (CSA) and the total CSA was performed. Eleven MRI scans of patients with subscapularis atrophy following isolated subscapularis tendon tears were analysed and cross sectional area ratio (upper half /total) determined. To guarantee reliable measurement of the CSA and its ratio, bony landmarks were also defined. All parameters were statistically compared for inter-rater reliability, reproducibility and capacity to quantify subscapularis atrophy. Results The mean age in the control group was 49.7 years (± 15.0). The mean cross sectional area (CSA) was 2367.0 mm2 (± 741.4) for the complete subscapularis muscle and 1048.2 mm2 (± 313.3) for the upper half, giving a mean ratio of 0.446 (± 0.046). In the subscapularis repair group the mean age was 56.7 years (± 9.3). With a mean cross sectional area of 1554.7 mm2 (± 419.9) for the complete and of 422.9 mm2 (± 173.6) for the upper half of the subscapularis muscle, giving a mean CSA ratio of 0.269 (± 0.065) which was seen to be significantly lower than that of the control group (p < 0.05). Conclusion Analysis of typical atrophy patterns of the subscapularis muscle demonstrates that the CSA ratio represents a reliable and reproducible assessment tool in quantifying subscapularis atrophy. We propose the classification of subscapularis atrophy as Stage I (mild atrophy) in case of reduction of the cross sectional area ratio < 0.4, Stage II (moderate atrophy) in case of < 0.35 and Stage III (severe atrophy) if < 0.3.


2016 ◽  
Vol 52 (1) ◽  
pp. 12-23 ◽  
Author(s):  
Ran S Sopher ◽  
Andrew A Amis ◽  
D Ceri Davies ◽  
Jonathan RT Jeffers

Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.


2004 ◽  
Vol 96 (2) ◽  
pp. 463-468 ◽  
Author(s):  
Eric Laffon ◽  
Christophe Vallet ◽  
Virginie Bernard ◽  
Michel Montaudon ◽  
Dominique Ducassou ◽  
...  

The present method enables the noninvasive assessment of mean pulmonary arterial pressure from magnetic resonance phase mapping by computing both physical and biophysical parameters. The physical parameters include the mean blood flow velocity over the cross-sectional area of the main pulmonary artery (MPA) at the systolic peak and the maximal systolic MPA cross-sectional area value, whereas the biophysical parameters are related to each patient, such as height, weight, and heart rate. These parameters have been measured in a series of 31 patients undergoing right-side heart catheterization, and the computed mean pulmonary arterial pressure value (PpaComp) has been compared with the mean pressure value obtained from catheterization (PpaCat) in each patient. A significant correlation was found that did not differ from the identity line PpaComp = PpaCat ( r = 0.92). The mean and maximal absolute differences between PpaComp and PpaCat were 5.4 and 11.9 mmHg, respectively. The method was also applied to compute the MPA systolic and diastolic pressures in the same patient series. We conclude that this computed method, which combines physical (whoever the patient) and biophysical parameters (related to each patient), improves the accuracy of MRI to noninvasively estimate pulmonary arterial pressures.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Qianru Li ◽  
Qi Zhang ◽  
Yehua Cai ◽  
Yinghui Hua

Purpose. To evaluate differences of Achilles tendon (AT) hardness and morphology between asymptomatic tendons in patients with acute AT ruptures on the contralateral side and asymptomatic tendons in healthy people by using computer-assisted quantification on axial-strain sonoelastography (ASE). Methods. The study consisted of 33 asymptomatic tendons in 33 patients (study group) and 34 tendons in 19 healthy volunteers (control group). All the tendons were examined by both ASE and conventional ultrasound. Computer-assisted quantification on ASE was applied to extract hardness variables, including the mean (Hmean), 20th percentile (H20), median (H50) and skewness (Hsk) of the hardness within tendon, and the ratio of the mean hardness within tendon to that outside tendon (Hratio) and three morphological variables: the thickness (THK), cross-sectional area, and eccentricity (ECC) of tendons. Results. The Hmean, Hsk, H20, H50, and Hratio in the proximal third of the tendon body in study group were significantly smaller than those in control group (Hmean: 0.43±0.09 vs 0.50±0.07, p=0.001; Hsk: -0.53±0.51 vs -1.09±0.51, p<0.001; H20: 0.31±0.10 vs 0.40±0.10, p=0.001; H50: 0.45±0.10 vs 0.53±0.08, p<0.001; Hratio: 1.01±0.25 vs 1.20±0.23, p=0.003). The THK and cross-sectional area of tendons in the study group were larger than those in the control group (p<0.05). Conclusions. As a quantitative objective method, the computer-assisted ASE reveals that the asymptomatic ATs contralateral to acute rupture are softer than those of healthy control group at the proximal third and the asymptomatic tendons in people with rupture history are thicker, larger, and rounder than those of normal volunteers especially at the middle and distal thirds of AT body.


2021 ◽  
Vol 20 (1) ◽  
pp. 50-54
Author(s):  
Thyago Guirelle Silva ◽  
Rodrigo Augusto do Amaral ◽  
Raphael Rezende Pratali ◽  
Luiz Pimenta

ABSTRACT Objective: To verify the effectiveness of indirect decompression after lateral access fusion in patients with high pelvic incidence. Methods: A retrospective, non-comparative, non-randomized analysis of 22 patients with high pelvic incidence who underwent lateral access fusion, 11 of whom were male and 11 female, with a mean age of 63 years (52-74), was conducted. Magnetic resonance exams were performed within one year after surgery. The cross-sectional area of the thecal sac, anterior and posterior disc heights, and bilateral foramen heights, measured pre- and postoperatively in axial and sagittal magnetic resonance images, were analyzed. The sagittal alignment parameters were measured using simple radiographs. The clinical results were evaluated using the ODI and VAS (back and lower limbs) questionnaires. Results: In all cases, the technique was performed successfully without neural complications. The mean cross-sectional area increased from 126.5 mm preoperatively to 174.3 mm postoperatively. The mean anterior disc height increased from 9.4 mm preoperatively to 12.8 mm postoperatively, while the posterior disc height increased from 6.3 mm preoperatively to 8.1 mm postoperatively. The mean height of the right foramen increased from 157.3 mm in the preoperative period to 171.2 mm in the postoperative period and that of the left foramen increased from 139.3 mm in the preoperative to 158.9 mm in the postoperative. Conclusions: This technique is capable of correcting misalignment in spinal deformity, achieving fusion and promoting the decompression of neural elements. Level of evidence III; Retrospective study.


1971 ◽  
Vol 15 (03) ◽  
pp. 231-245 ◽  
Author(s):  
C. M. Lee ◽  
J. N. Newman

A neutrally buoyant slender body of arbitrary sectional form, submerged beneath a free surface, is free to respond to an incident plane progressive wave system. The fluid is assumed inviscid, incompressible, homogeneous and infinitely deep. The first-order oscillatory motion of the body and the second-order time-average vertical force and pitching moment acting on the body are obtained in terms of Kochin's function. By use of slender-body theory for a deeply submerged body, the final expressions for the mean force and the moment are shown to depend on the longitudinal distribution of sectional area and added mass and on the amplitude and the frequency of the ambient surface waves. The magnitude of the mean force for various simple geometric cylinders is compared with that of a circular cylinder of equal cross-sectional area. The mean force on a nonaxisymmetric body is often approximated by replacing the section with circular profiles of equivalent cross-sectional area. A better scheme of approximation is presented, based on a simple way of estimating the two-dimensional added mass. It is expected that the effect of the cross-sectional geometry on mean vertical force and moment will be more significant when the body is very close to the free surface.


Sign in / Sign up

Export Citation Format

Share Document