Tests of two theories of food intake using growing pigs 2. The effect of a period of reduced growth rate on the subsequent intake of foods of differing bulk content

2001 ◽  
Vol 72 (2) ◽  
pp. 361-373 ◽  
Author(s):  
E.C. Whittemore ◽  
G.C. Emmans ◽  
B.J. Tolkamp ◽  
I. Kyriazakis

AbstractThe effect of a period of feeding on a high bulk food, upon the subsequent intake of foods of differing bulk content, was investigated in two experiments of the same design. The intention was to provide a severe test of the two current conceptual frameworks available for the prediction and understanding of food intake. In each experiment 40 male Manor Meishan pigs were randomly allocated to one of four treatment groups at weaning. Each experiment was split into two periods, P1 (12 to 18 kg) and P2 (18 to 32 kg). The treatments, all with ad libitum feeding, were: a control food (C) given throughout (treatment CC); a medium bulk food (M) given throughout (treatment MM); a high bulk food (H) given in P1 and then C in P2 (treatment HC); H given in P1 and M in P2 (treatment HM). C was based on micronized wheat with 13·4 MJ digestible energy and 243 g crude protein per kg fresh food. In experiment 1 M contained 350 g/kg and H 560 g/kg of unmolassed sugar-beet pulp and in experiment 2 M contained 500 g/kg and H 700 g/kg of unmolassed sugar-beet pulp. Framework 1 predicted that food intake on the medium bulk food (M) would not be increased, whereas framework 2 predicted that intake on M would be increased after a period of feeding on H, compared with when M was offered continuously.In P1, both food intake (P < 0·01) and growth (P < 0·001) were severely limited on H compared with C. In experiment 1 growth was limited on M compared with C during the first 7 days of P1 (P < 0·01) only. In experiment 2 intake (P < 0·001) and growth (P < 0·001) on M were limited throughout P1, compared with C but not thereafter. Therefore, in neither experiment did M cause a lower growth rate than C from 18 to 32 kg. In experiment 1 there was full adaptation to M after about 10 days from 12 kg. In experiment 2 adaptation was complete by the end of the first 7 days from 18 kg.In P2, food intake (P < 0·001) and live-weight gain (P < 0·05 and P < 0·001 in experiments 1 and 2, respectively) were increased on HC compared with CC. By the last 7 days of P2 intake was still higher (P < 0·01) but growth rate was no longer different to CC. Intake and gain were increased in P2 on HM compared with MM but, in general, these differences were small and not significant. In the first 7 days of P2, in experiment 1 pigs on HM had higher intakes (P < 0·001) and gains (P < 0·05) than those on MM, but in experiment 2 only intake was higher (P < 0·01) with no difference in gain. By the last 7 days of P2 there was no difference in either intake or gain between these two groups in either experiment. Pigs on HC increased intake by more than those on HM. There was, therefore, a significant interaction for food intake (P < 0·05, in experiment 1 and P < 0·001, in experiment 2) between prior and present food.The unexpected failure of either M food to limit growth throughout the experimental period meant that the results of these experiments could not be used as a strong test to reject either one of the frameworks. However, the ability of the pigs to compensate on M was less than that on C. The data provide some evidence that under conditions of compensation foods such as M may be limiting. This is in closer agreement with the framework that predicted that consumption of a limiting food will not increase after a period of feeding on a high bulk food (framework 1).

2003 ◽  
Vol 76 (1) ◽  
pp. 89-100 ◽  
Author(s):  
E.C. Whittemore ◽  
G. C. Emmans ◽  
I. Kyriazakis

AbstractData from pigs between 12 and 120 kg live weight were used to develop a relationship between the capacity for food bulk and live weight. High bulk foods, intended to limit growth, were offered for 21 days to pigs of 12, 36 (600 g sugar-beet pulp per kg (SBP60)) and 108 (800 g sugar-beet pulp per kg (SBP80)) kg live weight. Control pigs were given a low bulk food C at all weights. After 21 days the pigs were slaughtered and measurements made on the gastro-intestinal tract (GIT). In two additional treatment groups SBP60was offered from a weight of either 36 kg or 72 kg before SBP80was offered at 108 kg. Daily live-weight gain, after allowing for the effects of a change of gut fill, was less at all weights on the high bulk foods than on C. At all weights the high bulk foods caused a significant increase in the weights of the stomach, large intestine, caecum and gut fill. Effects on the weight of the small intestine were small. Previous nutrition had no significant effect on the adapted performance, or on the size of the GIT, of pigs given SBP80at 108 kg but pre-feeding SBP60significantly increased initial consumption of SBP80. Constrained intake was not directly proportional to live weight beyond 40 kg. The absolute capacity for bulk (Cap, kg water-holding capacity per day) was related to live weight (W, kg) by the quadratic function Cap = (0·192.W) - (0·000299.W2). The value of Cap is predicted to reach a maximum when W = 321 kg. The combined weights of the large intestine and caecum (WLIC) changed with W in ways that were similar to the way in which Cap changed. In addition the ratio of Cap to WLIC was close to constant. The combined weight of the large intestine and the caecum may determine the capacity for food bulk in pigs.


2001 ◽  
Vol 2001 ◽  
pp. 33-33
Author(s):  
E.C. Whittemore ◽  
I. Kyriazakis ◽  
G.C. Emmans ◽  
B.J. Tolkamp ◽  
P.W. Knap ◽  
...  

The objective of this experiment was to provide a severe test of the two frameworks currently available for understanding and predicting voluntary food intake. Framework 1 predicts that an animal will eat at a level that will allow potential performance to be achieved subject to its capacity to deal with a constraint, such as the bulk content of the food, not being exceeded. In framework 2 intake is seen as that which will allow some biological efficiency, such as the ratio of net energy intake per litre of oxygen consumed, to be maximised (Tolkamp and Ketelaars, 1992). The frameworks differ in their prediction of the effect that a period of prior feeding on a high bulk food (severely limiting) will have upon the subsequent intake of foods of differing bulk content. Framework 1 predicts that the intake of a low bulk food, that is non limiting, but not that of a moderate bulk food, that is limiting, will be increased under such circumstances. Framework 2 predicts that intake will be increased regardless of the type of food being fed as long as the Metabolisable Energy of that food is utilised more efficiently.


Author(s):  
A.C. Longland ◽  
A.G Low ◽  
W.H. Close ◽  
C.E. Sharpe ◽  
J.C. Carruthers ◽  
...  

Recent studies have shown that piglets, growing pigs and sows can perform well on diets containing substantial proportions of plain sugar beet pulp (SBP) (Bulman et al., 1989; Low et al., 1990; Close et al., 1990). SBP contains c. 600 g non-starch polysaccharides (NSP)/kg which, unlike starch, cannot be digested by the hosts’ enzymes but must be fermented by the gut microflora to yield VFA for subsequent use as an energy source by the animal.The objective of this study was to determine the degree to which 32-day-old piglets, growing pigs of various ages, and mature sows can ferment the NSP content of diets containing varying proportions of SBP.


2001 ◽  
Vol 72 (2) ◽  
pp. 351-360 ◽  
Author(s):  
E. C. Whittemore ◽  
I. Kyriazakis ◽  
G.C. Emmans ◽  
B.J. Tolkamp

AbstractAn experiment was carried out on pigs to provide a test of two current conceptual frameworks available for the understanding and prediction of food intake. Framework 1 assumes that food intake will be that which allows potential (genetic) performance to be achieved. If this is not achieved then it is because intake is being constrained. Framework 2 sees food intake as being a consequence of a process of optimization such that biological efficiency (the ratio of net energy ingested to oxygen consumed) is maximized. Both frameworks predict that a reduction in temperature will increase the intake of a high quality food. For a food of low quality framework 2 predicts that intake will also be increased when temperature is decreased while framework 1 predicts that it will not. This difference between the predictions of the two frameworks allows them to be tested by means of an experiment in which foods of different quality were given to animals at different environmental temperatures.Forty pigs were randomly allocated to a control (C) food based on micronized wheat with 13·1 MJ digestible energy (DE) and 232 g crude protein (CP) per kg fresh food, or one of two high bulk foods. The high bulk foods contained either 650 g/kg of unmolassed sugar-beet pulp (SBP) or 650 g/kg of wheat bran (WB). Half the pigs were maintained at a thermoneutral temperature of 22ºC for 14 days followed by a cold temperature of 12ºC for 14 days. The other half were maintained at 12ºC for a period of 14 days followed by a temperature of 22ºC for 14 days. Food intake was recorded daily and live weight twice weekly.There was a highly significant food ✕ temperature interaction ( P < 0·001) for food intake. A reduction in temperature resulted in an increase in food intake on C and WB but had no effect on the intake of SBP. There was a highly significant effect of both temperature and food on intake ( P < 0·001). A reduction in temperature resulted in a significant increase in food intake, intake on WB was higher than that of either C or SBP. There was no overall effect of temperature on live-weight gain although a reduction in temperature resulted in a non-significant increase in the gain of C and reduction in the gain of WB and SBP. There was a highly significant effect of food ( P < 0·001) on live-weight gain, as gain on C was higher than that on either WB or SBP.The results of the experiment were in agreement with the predictions set forward by the first framework that growing pigs are eating to achieve maximum performance subject to constraints.


Author(s):  
B P Gill ◽  
A G Taylor ◽  
B Hardy ◽  
J G Perrott

Satisfactory levels of performance and improved carcass and meat eating quality in growing pigs fed high levels of sugar beet pulp (SBP) have been recently demonstrated by Kay et al. (1990) and Longland et al. (1991). One of the main advantages from feeding SBP was a reduction in carcass fatness and increased returns from improved grading. The objective of this work was to determine whether these benefits could be sustained to heavier finishing weights and to compare differences in the response to SBP as a source of readily fermentable non-starch polysaccharides (NSP) and to oat feed (OF), a cereal by-product high in insoluble NSP, which is less easily degraded.


2019 ◽  
Vol 97 (10) ◽  
pp. 4208-4218 ◽  
Author(s):  
Hazel B Rooney ◽  
Keelin O’Driscoll ◽  
John V O’Doherty ◽  
Peadar G Lawlor

Abstract This study evaluated the effects of l-carnitine (CAR) and sugar beet pulp (SBP) inclusion in gilt gestation diets on gilt live weight, cortisol concentration, lactation feed intake, and lifetime growth of progeny. Eighty-four pregnant gilts (Large White × Landrace) were randomly assigned to a treatment at day 38 of gestation until parturition; Control (0% SBP, 0 g CAR), CAR (0.125 g/d CAR), SBP (40% SBP), and SBP plus CAR (40% SBP, 0.125 g/d CAR). Gilts were weighed and back-fat depth was recorded on day 38, day 90, and day 108 of gestation and at weaning. Gilt saliva samples were collected pre-farrowing and fecal consistency was scored from entry to the farrowing room until day 5 post-partum. The number of piglets born (total, live, and stillborn) and individual birth weight was recorded. Piglet blood glucose concentration was measured 24 h post-partum and pigs were weighed on day 1, day 6, day 14, day 26, day 76, day 110, and day 147 of life. Carcass data were collected at slaughter. There was no interaction between CAR and SBP for any variable measured. The SBP-fed gilts were heavier on day 90 and day 108 of gestation (P < 0.05) and lost more weight during lactation (P < 0.05) than control gilts. They also had a greater fecal consistency score (P < 0.01). Total farrowing duration, piglet birth interval, and lactation feed intakes were similar between treatments (P > 0.05). The number of piglets born (total, live, and stillborn) and piglet birth weight was likewise similar between treatments (P > 0.05). Piglets from CAR-fed gilts had lower blood glucose concentrations (P < 0.01), while piglets from SBP-fed gilts had greater blood glucose concentrations (P < 0.01). Piglets from CAR gilts had a lower average daily gain between day 1 and day 6 (P < 0.05) and day 14 and day 26 post-partum (P < 0.05) compared to piglets from control gilts. However, CAR gilts weaned a greater number of pigs (P = 0.07). Live weight and carcass weight at slaughter were heavier for pigs from CAR gilts (P < 0.05) and from SBP gilts (P < 0.05). Pigs from CAR gilts (P < 0.01) and SBP gilts (P < 0.05) had increased carcass muscle depth. In conclusion, no benefit was found from the combined feeding of CAR and SBP. Fed separately, CAR increased the live weight, carcass weight, and muscle depth of progeny at slaughter. Feeding a high SBP diet increased fecal consistency in gilts pre-farrowing and increased live weight and carcass muscle depth of progeny.


2002 ◽  
Vol 2002 ◽  
pp. 27-27
Author(s):  
E. C. Whittemore ◽  
I. Kyriazakis ◽  
G.C. Emmans ◽  
B.J. Tolkamp ◽  
C. A. Morgan ◽  
...  

We need to improve our understanding of the factors that are important for the control of food intake on high bulk foods. The study of short term feeding behaviour (STFB) may help to do this. The objective of this experiment was to study the effects of giving foods differing in bulk content on the STFB of growing pigs. It was expected that the foods would result in different levels of daily intake and that this would be reflected as differences in STFB between the foods. Two hypotheses were developed based on ideas about the way in which a physical constraint to intake could arise. H1; there would be less diurnal variation in feeding on high bulk foods that limit intake. H2; feeding patterns on bulky foods would be less flexible than those on a control food when feeding time is limited by reducing time of access to the feeder.


Author(s):  
A.C. Longland ◽  
W.H. Close ◽  
A.G. Low

The utilization of diets high in fibre (defined here as non-starch polysaccharide - NSP) is dependent on the extent to which the NSP is fermented by the gut microflora, and the subsequent utilization by the animal of the end-products of fermentation - the VFAs. It has frequently been assumed that fermentation of NSP in the pig occurs almost exclusively in the hind-gut. However, a number of studies using pigs fitted with ileal-cannulas have suggested that some fermentation of NSP may occur prior to the hind-gut (e.g. Graham et al., 1985). The aim of this study was to determine the relative roles of the small and large intestine in a) the digestion of feeds containing non-starch polysaccharides, and b) the subsequent utilization of energy by growing pigs. This was achieved by comparing the abilities of intact or ileo-rectomised pigs to digest and grow on cereal-based diets containing 0 or 300 g/kg sugar beet pulp.


2002 ◽  
Vol 74 (3) ◽  
pp. 503-515 ◽  
Author(s):  
G.Le Goff ◽  
J. van Milgen ◽  
J. Noblet

AbstractFour experimental diets differing in the level and the origin of dietary fibre (DF) were studied: a control, low DF diet (diet C, 100 g total dietary fibre (TDF) per kg dry matter (DM)) and three fibre-rich diets (200 g TDF per kg DM) which corresponded to a combination of diet C and maize bran (diet MB), or wheat bran (diet WB), or sugar-beet pulp (diet SBP). During two successive experimental periods, each diet was offered to five pigs at a growing stage (35 kg body weight (BW)) and at a finishing stage (75 kg BW). In addition, four adult ovariectomized sows received successively one of the four diets according to a 4 ✕ 4 Latin-square design. Digestive utilization of energy and nutrients of diets and rate of passage parameters were determined using a pulse dose of ytterbium oxide followed by total faecal collection. Faecal marker excretion was quantified using an age-dependent, one-compartment model, from which the mean retention time in the gastrointestinal tract of pigs (MRT) was obtained. The digestibility of dietary energy and nutrients, especially the DF fraction, increased with the increase in BW from growing to finishing pigs (P < 0.01) and was still higher in adult sows; the difference between pig stages was more pronounced for diet MB. At each stage, the digestibility of energy or nutrients was lower (P < 0.01) for diets MB or WB than for diet SBP. Accordingly, the energy and DF digestibility of sugar-beet pulp was higher and increased much less with BW. The MRT was shorter for diets MB and WB in growing pigs and in sows. Sows had a longer MRT (81 h) than finishing pigs (37 h) and growing pigs (33 h); however, MRT was highly variable between sows. It is concluded that the degree to which different types of DF are digested depends, in part, on the botanical origin, and it may be improved by a longer MRT in the gastrointestinal tract of pigs. Some fibrous foodstuffs (such as maize-by products) will benefit more from a longer MRT than others.


1990 ◽  
Vol 51 (1) ◽  
pp. 189-199 ◽  
Author(s):  
I. Kyriazakis ◽  
G. C. Emmans ◽  
C. T. Whittemore

ABSTRACTTo test the proposition that growing pigs, when given a choice between two foods, are able to select a diet that meets their requirements, and to investigate the rules of diet selection, four foods (L, A, B and H) with similar energy yields, but different concentrations of crude protein (CP) (125, 174, 213 and 267 g CP per kg fresh food respectively) were formulated. The four foods were offeredad libitumeither singly, or as a two-way choice using all the six possible pairs, to 40 individually caged pigs from 12 to 30 kg live weight. On the single foods the rate of food intake fell from 1001 to 971 to 961 to 868 (s.e.d. 40) g/day (F < 0·05) as the protein concentration of the foods increased from L to H; the growth rate followed an opposite trend (492, 627, 743 and 693 (s.e.d. 31) g/day respectively;P< 0·01). When the pigs had to select between two foods limiting in protein (L and A) the less limiting one was preferred (710 (s.e. 200) g A per kg total food intake; the protein concentration of the selected diet was 160 (s.e. 10) g CP per kg). On the choice between B and H (a choice between a food with protein concentration close to requirements and a food with protein excess) the lower food was markedly preferred (928 (s.e. 4) g B per kg total food intake; the protein concentration of the selected diet was 218 (s.e. 1) g CP per kg). When the animals were given a choice between two foods, a combination of which was non-limiting (pairs LB, LH, AB and AH), the protein concentrations of the selected diets were not different between treatments (208, 204, 202 and 205 (s.e.d. 13) g CP per kg respectively) and they also declined systematically with time and weight. The growth rate of the animals on these pairs were 752, 768, 769 and 763 (s.e.d. 54) g/day (P > 0·05), which were not significantly different from the highest growth rate achieved on a single food. The results suggest that pigs, when given a choice between a suitable pair of foods, are able to choose a balanced diet and to change its composition to reflect their changing requirements. The choice-feeding method may well be useful as an effective and economic way of estimating and meeting requirements, and of measuring the growth potential of pigs.


Sign in / Sign up

Export Citation Format

Share Document