Correction of Aberrations of a Transmission Electron Microscope

2001 ◽  
Vol 7 (S2) ◽  
pp. 900-901
Author(s):  
M. Haider

One of the most striking problems in electron optics, the correction of resolution limiting aberrations by means of a corrector incorporated into the electron microscope column, has been solved during the last six years by demonstrating the improvement of resolution beyond the theoretical limit of the uncorrected Electron Microscope (EM). At first, in 1995 [1] with the correction of spherical and chromatic aberration of a dedicated Low Voltage Scanning Electron Microscope (LVSEM) and later, in 1997, with the correction of only spherical aberration of a commercially available 200 kV TEM [2]. The correction of spherical aberration of a dedicated Scanning Transmission Electron Microscope (STEM) at 100 keV primary energy has been demonstrated [3] and further improvements can be anticipated within the near future.These achievements could only be obtained due to the emergence of new computer technology and especially CCD-cameras in the case of TEM correctors. These two developments made it possible first to calculate the electron optical components more precisely and hence, to achieve a better understanding of the requirements on the hardware and second, to have a better computer control of the electron microscope and the corrector itself. The combination of these two new technologies made it possible to go towards an automatisation of the alignment. This simplification of the alignment of an even more complex system is achieved by means of a proper combination of image acquisition and dedicated software in order to analyze and measure the aberrations of an electron optical system on one side and on the other to have appropriate tools to compensate these aberrations by computer controlled power supplies [4,5].

Author(s):  
M. G. R. Thomson

The variation of contrast and signal to noise ratio with change in detector solid angle in the high resolution scanning transmission electron microscope was discussed in an earlier paper. In that paper the conclusions were that the most favourable conditions for the imaging of isolated single heavy atoms were, using the notation in figure 1, either bright field phase contrast with β0⋍0.5 α0, or dark field with an annular detector subtending an angle between ao and effectively π/2.The microscope is represented simply by the model illustrated in figure 1, and the objective lens is characterised by its coefficient of spherical aberration Cs. All the results for the Scanning Transmission Electron Microscope (STEM) may with care be applied to the Conventional Electron Microscope (CEM). The object atom is represented as detailed in reference 2, except that ϕ(θ) is taken to be the constant ϕ(0) to simplify the integration. This is reasonable for θ ≤ 0.1 θ0, where 60 is the screening angle.


2009 ◽  
Vol 15 (S2) ◽  
pp. 642-643
Author(s):  
M Bolorizadeh ◽  
HF Hess

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


2001 ◽  
Vol 7 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Patrick Echlin

Abstract A brief description is given of the events surrounding the development of biological X-ray microanalysis during the last 30 years, with particular emphasis on the contribution made by research workers in Cambridge, UK. There then follows a broad review of some applications of biological X-ray microanalysis. A more detailed consideration is given to the main thrust of current procedures and applications that are, for convenience, considered as four different kinds of samples. Thin frozen dried sections which are analyzed at ambient temperatures in a transmission electron microscope (TEM); semithin frozen dried sections which are analyzed at low temperature in a scanning transmission electron microscope (STEM); thick frozen hydrated sections which are analyzed at low temperature in a scanning electron microscope (SEM), and bulk samples which are analyzed at low temperature in the same type of instrument. A brief outline is given of the advantages and disadvantages of performing low-voltage, low-temperature X-ray microanalysis on frozen hydrated bulk biological material. The article concludes with a consideration of alternative approaches to in situ analysis using either high-energy beams or visible and near-visible photons.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1171-1172 ◽  
Author(s):  
Ondrej L. Krivanek ◽  
Niklas Dellby ◽  
Andrew J. Spence ◽  
Roger A. Camps ◽  
L. Michael Brown

Aberration correction in electron microscopy is a subject with a 60 year history dating back to the fundamental work of Scherzer. There have been several partial successes, such as Deltrap's spherical aberration (Cs) corrector which nulled Cs over 30 years ago. However, the practical goal of attaining better resolution than the best uncorrected microscope operating at the same voltage remains to be fulfilled. Combining well-known electron-optical principles with stable electronics, versatile computer control, and software able to diagnose and correct aberrations on-line is at last bringing this goal within reach.We are building a quadrupole-octupole Cs corrector with automated aberration diagnosis for a VG HB5 dedicated scanning transmission electron microscope (STEM). A STEM with no spherical aberration will produce a smaller probe size with a given beam current than an uncorrected STEM, and a larger beam current in a given size probe.


2012 ◽  
Vol 18 (4) ◽  
pp. 699-704 ◽  
Author(s):  
Andrew R. Lupini ◽  
Stephen J. Pennycook

AbstractThe resolution of conventional electron microscopes is usually limited by spherical aberration. Microscopes equipped with aberration correctors are then primarily limited by higher order, chromatic, and misalignment aberrations. In particular the Nion third-order aberration correctors installed on machines with a low energy spread and possessing sophisticated alignment software were limited by the uncorrected fifth-order aberrations. Here we show how the Nion fifth-order aberration corrector can be used to adjust and reduce some of the fourth- and fifth-order aberrations in a probe-corrected scanning transmission electron microscope.


Sign in / Sign up

Export Citation Format

Share Document