FIB Techniques for Analysis of Metallurgical Specimens

2000 ◽  
Vol 6 (S2) ◽  
pp. 524-525 ◽  
Author(s):  
Michael W. Phaneuf ◽  
Jian Li

Focused ion beam (FIB) microscopes, the use of which is well established in the semiconductor industry, are rapidly gaining attention in the field of materials science, both as a tool for producing site specific, parallel sided TEM specimens and as a stand alone specimen preparation and imaging tool.Both FIB secondary ion images (FIB SII) and FIB secondary electron images (FIB SEI) contain novel crystallographic and chemical information. The ability to see “orientation contrast” in FIB SEI and to a lesser extent SII is well known for cubic materials and more recently stress-free FIB sectioning combined with FIB imaging have been shown to reveal evidence of plastic deformation in metallic specimens. Particularly in hexagonal metals, FIB orientation contrast is sometimes reduced or eliminated by the FIB sectioning process. We have successfully employed FIB gas assisted etching during FIB sectioning using XeF2 for zirconium alloys and Cl2 for zinc coatings on steels to retain orientation contrast during subsequent imaging.

1999 ◽  
Vol 5 (S2) ◽  
pp. 892-893
Author(s):  
J.M. Cairney ◽  
R.D. Smith ◽  
P.R. Munroe

The focused ion beam (FIB) miller has been widely accepted as a powerful tool in the semiconductor industry. However, it is now finding applications in more general materials science applications. The high resolution, energetic gallium ion beam can rapidly and precisely section materials to reveal their internal structure; one particularly valuable application being the preparation of thin foils for TEM examination, especially from heterogenous materials.To date, TEM sample preparation using FIBs has concentrated on semiconductor cross-sections [1], powders [2], and surface treated materials, e.g. galvanized steels [3]. However, thin foils of grossly heterogeneous materials, such as metal-matrix composites, are also difficult to prepare using conventional methods and are therefore well suited to sectioning using the FIB. In this study, thin foils were prepared from two composite materials: a 7075 aluminium alloy containing a 20% volume fraction of SiC particles and a FeAl alloy containing a 60% volume fraction of WC particles.


1998 ◽  
Vol 4 (S2) ◽  
pp. 492-493 ◽  
Author(s):  
M.W. Phaneuf ◽  
J. Li ◽  
T. Malis

Focused Ion Beam or FIB systems have been used in integrated circuit production for some time. The ability to combine rapid, precision focused ion beam sputtering or gas-assisted ion etching with focused ion beam deposition allows for rapid-prototyping of circuit modifications and failure analysis of defects even if they are buried deep within the chip's architecture. Inevitably, creative TEM researchers reasoned that a FIB could be used to produce site specific parallel-sided, electron transparent regions, thus bringing about the rather unique situation wherein the specimen preparation device often was worth as much as the TEM itself.More recently, FIB manufacturers have concentrated on improving the resolution and imaging characteristics of these instruments, resulting in a more general-purpose characterization tool. The Micrion 2500 FIB system used in this study is capable of 4 nm imaging resolution using either secondary electron or secondary ions, both generated by a 50 kV liquid metal gallium ion source.


1998 ◽  
Vol 4 (S2) ◽  
pp. 856-857
Author(s):  
David M. Longo ◽  
James M. Howe ◽  
William C. Johnson

The focused ion beam (FIB) has become an indispensable tool for a variety of applications in materials science, including that of specimen preparation for the transmission electron microscope (TEM). Several FIB specimen preparation techniques have been developed, but some problems result when FIB specimens are analyzed in the TEM. One of these is X-ray fluorescence from bulk material surrounding the thin membrane in FIB-prepared samples. This paper reports on a new FIB specimen preparation method which was devised for the reduction of X-ray fluorescence during energy dispersive X-ray spectroscopy (EDS) in the TEM.Figure 1 shows three membrane geometries that were investigated in this study on a single-crystal Si substrate with a RF sputter-deposited 50 nm Ni film. Membrane 1 is the most commonly reported geometry in the literature, with an approximately 20 urn wide trench and a membrane having a single wedge with a 1.5° incline.


1997 ◽  
Vol 480 ◽  
Author(s):  
M. W. Phaneuf ◽  
N. Rowlands ◽  
G. J. C. Carpenter ◽  
G. Sundaram

AbstractFocused Ion Beam (FIB) systems have been steadily gaining acceptance as specimen preparation tools in the semiconductor industry. This is largely due to the fact that such instruments are relatively commonplace as failure analysis tools in semiconductor houses, and are commonly used in the preparation of cross-sections for imaging under the ion beam or using an electron beam in an SEM. Additionally, the ease with which cross-sectional TEM specimens of semiconductor devices can be prepared using FIB systems has been well demonstrated. However, this technology is largely unknown outside the semiconductor industry. Relatively few references exist in the literature on the preparation of cross-sectional TEM specimens of non-semiconductor materials by FIB. This paper discusses a specific use of FIB technology in the preparation of cross-sectional TEM specimens of non-semiconductor samples that are difficult to prepare by conventional means. One example of such materials is commercial galvannealed steel sheet that is used to form corrosion resistant auto-bodies for the automobile industry. Cross-sectional TEM specimens of this material have proved difficult and time-intensive to prepare by standard polishing and ion milling techniques due to galvanneal's inherent flaking and powdering difficulties, as well as the different sputtering rates of the various Fe-Zn intermetallic phases present in the galvannealed coatings. TEM results from cross-sectional samples of commercial galvannealed steel coatings prepared by conventional ion milling and FIB techniques are compared to assess image quality, the size of the electron-transparent thin regions that can be readily prepared and the quality of samples produced by both techniques. Specimen preparation times for both techniques are reported.


2018 ◽  
Author(s):  
M. J. Campin ◽  
C. S. Bonifacio ◽  
P. Nowakowski ◽  
P. E. Fischione ◽  
L. A. Giannuzzi

Abstract The semiconductor industry recently has been investigating new specimen preparation methods that can improve throughput while maintaining quality. The result has been a combination of focused ion beam (FIB) preparation and ex situ lift-out (EXLO) techniques. Unfortunately, the carbon support on the EXLO grid presents problems if the lamella needs to be thinned once it is on the grid. In this paper, we show how low-energy (< 1 keV), narrow-beam (< 1 μm diameter) Ar ion milling can be used to thin specimens and remove gallium from EXLO FIB specimens mounted on various support grids.


Author(s):  
R. Alani ◽  
R. J. Mitro ◽  
W. Hauffe

Abstract The semiconductor industry routinely prepares crosssectional SEM specimens using several traditional techniques. Included in these are cleaving, mechanical polishing, wet chemical etching and focused ion beam (FIB) milling. This presentation deals with a new alternate method for preparation of SEM semiconductor specimens based upon a dedicated broad ion beam instrument. Offered initially as an alternative to wet chemical etching, the instrument was designed to etch and coat SEM and metallographic specimens in one vacuum chamber using inert gas (Ar) ion beams. The system has recently undergone further enhancement by introducing iodine Reactive Ion Beam Etching (RIBE) producing much improved etching/cleaning capabilities compared with inert gas ion beam etching. Further results indicate Ar broad ion beam etching can offer a rapid, simple, more affordable alternative (to FIB machines) for precision cross sections and for “slope cutting,” a technique producing large cross-sections within a short time frame. The overall effectiveness of this system for iodine RIBE etching, for precision cross sectioning and “slope cutting” will be shown for a number of traditional and advanced semiconductor devices.


2017 ◽  
Vol 23 (4) ◽  
pp. 769-781 ◽  
Author(s):  
Srinivas Subramaniam ◽  
Jennifer Huening ◽  
John Richards ◽  
Kevin Johnson

AbstractThe xenon plasma focused ion beam instrument (PFIB), holds significant promise in expanding the applications of focused ion beams in new technology thrust areas. In this paper, we have explored the operational characteristics of a Tescan FERA3 XMH PFIB instrument with the aim of meeting current and future challenges in the semiconductor industry. A two part approach, with the first part aimed at optimizing the ion column and the second optimizing specimen preparation, has been undertaken. Detailed studies characterizing the ion column, optimizing for high-current/high mill rate activities, have been described to support a better understanding of the PFIB. In addition, a novel single-crystal sacrificial mask method has been developed and implemented for use in the PFIB. Using this combined approach, we have achieved high-quality images with minimal artifacts, while retaining the shorter throughput times of the PFIB. Although the work presented in this paper has been performed on a specific instrument, the authors hope that these studies will provide general insight to direct further improvement of PFIB design and applications.


2007 ◽  
Vol 13 (6) ◽  
pp. 408-417 ◽  
Author(s):  
Alfred Cerezo ◽  
Peter H. Clifton ◽  
Sergio Lozano-Perez ◽  
Peter Panayi ◽  
Gang Sha ◽  
...  

Over the last few years there have been significant developments in the field of three-dimensional atom probe (3DAP) analysis. This article reviews some of the technical compromises that have led to different instrument designs and the recent improvements in performance. An instrument has now been developed, based around a novel reflectron configuration combining both energy compensation and focusing elements, that yields a large field of view and very high mass resolution. The use of laser pulsing in the 3DAP, together with developments in specimen preparation methods using a focused ion-beam instrument, have led to a significant widening in the range of materials science problems that can be addressed with the 3DAP. Recent studies of semiconductor materials and devices are described.


2000 ◽  
Vol 6 (S2) ◽  
pp. 514-515
Author(s):  
Julie M. Cairney ◽  
Paul R. Munroe

The focused ion beam miller (FIB) has been widely used in the semiconductor industry for many years, but only recently has its potential as a tool for materials science been recognised. The FIB uses a highly energetic beam of gallium ions to sputter material such that it can precisely section, as well as image, areas of interest. The FIB can be used to create crosssections, which can be examined in the FIB or in a scanning electron microscope (SEM). Cross sections can be made from delicate samples or samples in which a specific area needs to be viewed, for example to check the thickness of coatings or for failure analysis.The FIB may also be used to prepare transmission electron microscope (TEM) specimens [1]. Extremely site-specific thin areas may be prepared with high positional accuracy from heterogeneous samples such as composites or layered structures.


2018 ◽  
Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
M.J. Campin ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract Transmission electron microscopy (TEM) specimens are typically prepared using the focused ion beam (FIB) due to its site specificity, and fast and accurate thinning capabilities. However, TEM and high-resolution TEM (HRTEM) analysis may be limited due to the resulting FIB-induced artifacts. This work identifies FIB artifacts and presents the use of argon ion milling for the removal of FIB-induced damage for reproducible TEM specimen preparation of current and future fin field effect transistor (FinFET) technologies. Subsequently, high-quality and electron-transparent TEM specimens of less than 20 nm are obtained.


Sign in / Sign up

Export Citation Format

Share Document