Focused Ion Beam Sample Preparation of Non-Semiconductor Materials

1997 ◽  
Vol 480 ◽  
Author(s):  
M. W. Phaneuf ◽  
N. Rowlands ◽  
G. J. C. Carpenter ◽  
G. Sundaram

AbstractFocused Ion Beam (FIB) systems have been steadily gaining acceptance as specimen preparation tools in the semiconductor industry. This is largely due to the fact that such instruments are relatively commonplace as failure analysis tools in semiconductor houses, and are commonly used in the preparation of cross-sections for imaging under the ion beam or using an electron beam in an SEM. Additionally, the ease with which cross-sectional TEM specimens of semiconductor devices can be prepared using FIB systems has been well demonstrated. However, this technology is largely unknown outside the semiconductor industry. Relatively few references exist in the literature on the preparation of cross-sectional TEM specimens of non-semiconductor materials by FIB. This paper discusses a specific use of FIB technology in the preparation of cross-sectional TEM specimens of non-semiconductor samples that are difficult to prepare by conventional means. One example of such materials is commercial galvannealed steel sheet that is used to form corrosion resistant auto-bodies for the automobile industry. Cross-sectional TEM specimens of this material have proved difficult and time-intensive to prepare by standard polishing and ion milling techniques due to galvanneal's inherent flaking and powdering difficulties, as well as the different sputtering rates of the various Fe-Zn intermetallic phases present in the galvannealed coatings. TEM results from cross-sectional samples of commercial galvannealed steel coatings prepared by conventional ion milling and FIB techniques are compared to assess image quality, the size of the electron-transparent thin regions that can be readily prepared and the quality of samples produced by both techniques. Specimen preparation times for both techniques are reported.

2006 ◽  
Vol 983 ◽  
Author(s):  
Yuhong Wu ◽  
Meng Qu ◽  
Lucille A Giannuzzi ◽  
Sanjay Sampath ◽  
Andrew Gouldstone

AbstractThermally sprayed (TS) coatings are widely used for surface engineering across a range of industries, including aerospace, infrastructure and biomedical. TS materials are formed via the successive impingement, rapid quenching and build-up of molten powder particles on a substrate. The impacted ‘splats’ are thus the fundamental microstructural constituents of the coatings, and their intrinsic properties, as well as intersplat bonding and morphology, dictate coating behavior. Beyond the obvious practical considerations, from a scientific standpoint, splats represent a fascinating template for study, due to the highly non-equilibrium processing conditions (rapid deceleration from sub-sonic velocities, million-degree/sec cooling rates). In the literature, many studies of isolated splats on substrates have been carried out, but these have focused on overall morphology (disc-shape vs fragmented). Direct observations of microstructure, in particular cross-section, are limited in the specimen preparation stage due to splat size (tens of microns in diameter, 1-2 microns in thickness). However, Focused Ion Beam (FIB) techniques have allowed this problem to be addressed in a robust manner; in this paper we will discuss such approaches to observe Ni5Al splats on stainless steel substrates. Cross-sections through the splat and the substrate were created by recourse to ion milling and the ion beam itself provided good channeling contrast for grain imaging. The typical splat microstructure with sub-micron Ni(Al) columnar grains, a chill zone at the bottom and a lift off area is observed in high detail. In addition, an amorphous aluminum oxide top layer of 100-200 nm is partially present on top of the Ni(Al) columnar grains. At the splat/substrate interface, defects such as micro- and nano-scale pores were characterized for the first time and will be discussed. These observations provide insights into splat and interface formation during the deposition process and may drastically improve our current understanding of Ni5Al splat properties.


1999 ◽  
Vol 5 (S2) ◽  
pp. 902-903
Author(s):  
F. Shaapur ◽  
D. Brazeau ◽  
B. Foran

Focused ion beam (FIB) thinning of materials to electron transparency is now a routine procedure for preparation of specimens for transmission electron microscopy (TEM) of microelectronic materials and devices. The nano-scale structural damage, including implantation and amorphization due to this ion milling process has been well investigated and documented. In this paper, we discuss the micro-scale structural damage observed in copper/low-k materials and our efforts to minimize the extent of the damage without compromising the overall specimen preparation time.Figure 1 shows an area-specific cross-sectional specimen prepared from a copper/low-k via-chain test structure using the FIB-milling technique. The procedure involved mechanical thinning of a transverse wafer sliver followed by FIB-milling the area of interest to electron transparency according to conventional steps and conditions' using a liquid Ga+ ion source FIB system. The evidence of structural damage in terms of melting and/or sputtering of the metallization is visible at different areas.


2018 ◽  
Author(s):  
M. J. Campin ◽  
C. S. Bonifacio ◽  
P. Nowakowski ◽  
P. E. Fischione ◽  
L. A. Giannuzzi

Abstract The semiconductor industry recently has been investigating new specimen preparation methods that can improve throughput while maintaining quality. The result has been a combination of focused ion beam (FIB) preparation and ex situ lift-out (EXLO) techniques. Unfortunately, the carbon support on the EXLO grid presents problems if the lamella needs to be thinned once it is on the grid. In this paper, we show how low-energy (< 1 keV), narrow-beam (< 1 μm diameter) Ar ion milling can be used to thin specimens and remove gallium from EXLO FIB specimens mounted on various support grids.


Author(s):  
R. Alani ◽  
R. J. Mitro ◽  
W. Hauffe

Abstract The semiconductor industry routinely prepares crosssectional SEM specimens using several traditional techniques. Included in these are cleaving, mechanical polishing, wet chemical etching and focused ion beam (FIB) milling. This presentation deals with a new alternate method for preparation of SEM semiconductor specimens based upon a dedicated broad ion beam instrument. Offered initially as an alternative to wet chemical etching, the instrument was designed to etch and coat SEM and metallographic specimens in one vacuum chamber using inert gas (Ar) ion beams. The system has recently undergone further enhancement by introducing iodine Reactive Ion Beam Etching (RIBE) producing much improved etching/cleaning capabilities compared with inert gas ion beam etching. Further results indicate Ar broad ion beam etching can offer a rapid, simple, more affordable alternative (to FIB machines) for precision cross sections and for “slope cutting,” a technique producing large cross-sections within a short time frame. The overall effectiveness of this system for iodine RIBE etching, for precision cross sectioning and “slope cutting” will be shown for a number of traditional and advanced semiconductor devices.


2004 ◽  
Vol 12 (1) ◽  
pp. 41-43
Author(s):  
Shane Roberts ◽  
Daniel Flatoff

Modern microelectronics have rapidly decreased in geometry to enhance the speed and processing power of computers. Advanced devices are approaching design rules of sub 0.13 micron in size, and the trend continues at the rate dictated by Moore's Law, Coupled with this reduction in device size, is a change in materials used for producing these devices. Traditional aluminum interconnect metallurgy and oxide dielectric materials are being replaced with copper and low-kmaterials in an effort to continue the trend of shrinking device sizes and higher processing capacities.These changes in materials and device sizes have provided the impetus for alternative methods for producing cross sections. Although focused ion beam instrumentation has been successfully used for preparing cross sections, a combinatorial approach using polishing and argon ion milling has been found to dramatically enhance the ability to produce high quality cross sectional samples in a reasonably short amount of time.


2018 ◽  
Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
M.J. Campin ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract Transmission electron microscopy (TEM) specimens are typically prepared using the focused ion beam (FIB) due to its site specificity, and fast and accurate thinning capabilities. However, TEM and high-resolution TEM (HRTEM) analysis may be limited due to the resulting FIB-induced artifacts. This work identifies FIB artifacts and presents the use of argon ion milling for the removal of FIB-induced damage for reproducible TEM specimen preparation of current and future fin field effect transistor (FinFET) technologies. Subsequently, high-quality and electron-transparent TEM specimens of less than 20 nm are obtained.


1998 ◽  
Vol 4 (S2) ◽  
pp. 860-861 ◽  
Author(s):  
A. Ramirez de Arellano López ◽  
W.-A. Chiou ◽  
K. T. Faber

The results of TEM analyses of materials are critically dependent on the quality of the sample prepared. Although numerous techniques have been developed in the last two decades, differential thinning of inhomogeneous materials remains a serious problem. Recently, focused ion beam (FIB) technique has been introduced for cross-sectional sample preparation for TEM and SEM.A novel system for depositing a fine-grain (∼ 200 nm) ceramic coating on a metal surface via a patent pending Small-Particle Plasma Spray (SPPS) technique has been developed at the Basic Industry Research Laboratory of Northwestern University. To understand the properties of the coated surface, the ceramic/metal interface and the microstructure of the ceramic coating must be investigated. This paper presents a comparison of the microstructure of an A12O3 coating on a mild steel substrate prepared using conventional and FEB techniques.


1998 ◽  
Vol 523 ◽  
Author(s):  
John Mardinly ◽  
David W. Susnitzky

AbstractThe demand for increasingly higher performance semiconductor products has stimulated the semiconductor industry to respond by producing devices with increasingly complex circuitry, more transistors in less space, more layers of metal, dielectric and interconnects, more interfaces, and a manufacturing process with nearly 1,000 steps. As all device features are shrunk in the quest for higher performance, the role of Transmission Electron Microscopy as a characterization tool takes on a continually increasing importance over older, lower-resolution characterization tools, such as SEM. The Ångstrom scale imaging resolution and nanometer scale chemical analysis and diffraction resolution provided by modem TEM's are particularly well suited for solving materials problems encountered during research, development, production engineering, reliability testing, and failure analysis. A critical enabling technology for the application of TEM to semiconductor based products as the feature size shrinks below a quarter micron is advances in specimen preparation. The traditional 1,000Å thick specimen will be unsatisfactory in a growing number of applications. It can be shown using a simple geometrical model, that the thickness of TEM specimens must shrink as the square root of the feature size reduction. Moreover, the center-targeting of these specimens must improve so that the centertargeting error shrinks linearly with the feature size reduction. To meet these challenges, control of the specimen preparation process will require a new generation of polishing and ion milling tools that make use of high resolution imaging to control the ion milling process. In addition, as the TEM specimen thickness shrinks, the thickness of surface amorphization produced must also be reduced. Gallium focused ion beam systems can produce hundreds of Ångstroms of amorphised surface silicon, an amount which can consume an entire thin specimen. This limitation to FIB milling requires a method of removal of amorphised material that leaves no artifact in the remaining material.


2000 ◽  
Vol 6 (S2) ◽  
pp. 524-525 ◽  
Author(s):  
Michael W. Phaneuf ◽  
Jian Li

Focused ion beam (FIB) microscopes, the use of which is well established in the semiconductor industry, are rapidly gaining attention in the field of materials science, both as a tool for producing site specific, parallel sided TEM specimens and as a stand alone specimen preparation and imaging tool.Both FIB secondary ion images (FIB SII) and FIB secondary electron images (FIB SEI) contain novel crystallographic and chemical information. The ability to see “orientation contrast” in FIB SEI and to a lesser extent SII is well known for cubic materials and more recently stress-free FIB sectioning combined with FIB imaging have been shown to reveal evidence of plastic deformation in metallic specimens. Particularly in hexagonal metals, FIB orientation contrast is sometimes reduced or eliminated by the FIB sectioning process. We have successfully employed FIB gas assisted etching during FIB sectioning using XeF2 for zirconium alloys and Cl2 for zinc coatings on steels to retain orientation contrast during subsequent imaging.


2001 ◽  
Vol 7 (3) ◽  
pp. 287-291
Author(s):  
Toshie Yaguchi ◽  
Hiroaki Matsumoto ◽  
Takeo Kamino ◽  
Tohru Ishitani ◽  
Ryoichi Urao

AbstractIn this study, we discuss a method for cross-sectional thin specimen preparation from a specific site using a combination of a focused ion beam (FIB) system and an intermediate voltage transmission electron microscope (TEM). A FIB-TEM compatible specimen holder was newly developed for the method. The thinning of the specimen using the FIB system and the observation of inside structure of the ion milled area in a TEM to localize a specific site were alternately carried out. The TEM fitted with both scanning transmitted electron detector and secondary electron detector enabled us to localize the specific site in a halfway milled specimen with the positional accuracy of better than 0.1 µm. The method was applied to the characterization of a precipitate in a steel. A submicron large precipitate was thinned exactly at its center for the characterization by a high-resolution electron microscopy and an elemental mapping.


Sign in / Sign up

Export Citation Format

Share Document