Factors Affecting Quantitative Analysis Error in ESEM-EDS

2000 ◽  
Vol 6 (S2) ◽  
pp. 790-791
Author(s):  
R. A. Carlton ◽  
C. E. Lyman ◽  
J. E. Roberts

Standard Reference Material (SRM) 482 of the National Institute of Standards and Technology is a set of 6 gold/copper wires, ranging in concentration from 0 to 100% Cu in 20% steps, intended for calibration studies of electron beam microanalyzers. This is an appropriate standard to test the accuracy of energy dispersive x-ray spectrometry (EDS) in the Environmental Scanning Electron Microscope (ESEM). While the presence of the gas in the sample chamber gives the ESEM its unique capabilities, it also is the source of complications to x-ray spectrometry. The gas can spread the primary electron beam into a wide skirt of electrons with the consequent production of x-rays many micrometers from the target location of the beam.The six wires (∼ 500 jam in diameter) were embedded and polished in one epoxy mount. The mount was carbon coated in one set of experiments. The coating was removed and the sample retested.

1998 ◽  
Vol 4 (S2) ◽  
pp. 294-295
Author(s):  
R. A. Carlton ◽  
C. E. Lyman ◽  
J. E. Roberts

Standard Reference Material (SRM) 482 of the National Institute of Standards and Technology is a set of 6 gold/copper wires, ranging in concentration from 0 to 100% Cu in 20% steps, intended for calibration studies of electron beam microanalyzers. This is an appropriate standard to test the accuracy of energy dispersive x-ray spectrometry (EDS) in the Environmental Scanning Electron Microscope (ESEM). While the presence of the gas in the sample chamber gives the ESEM its unique capabilities, it also is the source of complications to x-ray spectrometry. The gas can spread the primary electron beam into a wide skirt of electrons with the consequent production of x-rays many micrometers from the target location of the beam. In spite of the difficulties, at least two methods have been proposed to correct high pressure data to that expected at low pressures.


1998 ◽  
Vol 4 (S2) ◽  
pp. 182-183
Author(s):  
John F. Mansfield ◽  
Brett L. Pennington

The environmental scanning electron microscope (Environmental SEM) has proved to be a powerful tool in both materials science and the life sciences. Full characterization of materials in the environmental SEM often requires chemical analysis by X-ray energy dispersive spectroscopy (XEDS). However, the spatial resolution of the XEDS signal can be severely degraded by the gaseous environment in the sample chamber. At an operating pressure of 5Torr a significant fraction of the primary electron beam is scattered after it passes through the final pressure limiting aperture and before it strikes the sample. Bolon and Griffin have both published data that illustrates this effect very well. Bolon revealed that 45% of the primary electron beam was scattered by more than 25 μm in an Environmental SEM operating at an accelerating voltage of 30kV, with a water vapor pressure of 3Torr and a working distance of 15mm.


Author(s):  
Brendon J. Griffin

Chamber pressure, accelerating voltage and working distance have been shown to control the relative diameter of the scattered skirt of the primary electron beam at the specimen surface in the ESEM. Inital x-ray studies indicate that at 3 torr, 30 kV and a WD=15mm, 45% of the beam comes from beyond 25 μm of the incidence point and 4% from beyond 1.5mm. At 5 torr 66% of the beam is scattered beyond 25 μm2. No specific data was available on the spatial resolution of x rays and this study aimed to improve that situation. The results also form the basis for establishing a mechanism for and defining the potential limits of quantitative EDS microanalysis in the ESEM.The negative viewing angle of the EDS x-ray detector in the current ESEM (model E-3) requires at least a 15 degree tilt on a flat sample for microanalysis. This geometry places a narrow limit on the working distance range that can be used, due to the collimation of the detector, thereby effectively eliminating working distance as a variable in x-ray microanalysis.


2000 ◽  
Vol 6 (S2) ◽  
pp. 798-799
Author(s):  
S.A. Wight ◽  
C.J. Zeissler

In this work, phosphor imaging plate technology is applied to measure electron scattering directly in the environmental scanning electron microscope (ESEM) specimen chamber. The scattering of electrons from the primary electron beam, under relatively high-pressure conditions (266 Pa) in the ESEM sample chamber, degrades the analytical accuracy of elemental analysis. The degree of this degradation is poorly known. To date, attempts to measure experimentally the spatial distribution of the scattered electrons have been limited to observing secondary effects such as the intensity of x-rays produced from copper targets positioned at various distances from the primary electron beam interaction point. A more accurate distribution of the scattered electron intensity can be obtained from a direct measurement of both the scattered and unscattered electrons over a large area with single electron sensitivity. Improvements to the accuracy of Monte Carlo models of the scattering process will be made possible by the direct measurement data.


Author(s):  
John A. Small ◽  
Scott A. Wight ◽  
Robert L. Myklebust ◽  
Dale E. Newbury

The characteristic fluorescence correction is used in electron probe microanalysis to account for the x-ray intensity excited in element “a” by the x-rays from the characteristic line of another element, “b”, in the sample. Since the excited intensity is not generated by the primary electron beam, it is necessary to apply the fluorescence correction for quantitative elemental analysis. This correction can be significant particularly when element “b” is a major component of the sample and the characteristic line for element “b” is slightly higher in energy than the critical excitation energy for the excited line of element “a”.The fluorescence correction, which is used in the various analytical programs, is described in equation 1.where I'*fa/I'*pa is the ratio of the emitted “a” intensity excited by “b” x-rays to the emitted intensity excited by the primary electron beam. The various parameters in this equation are accurately known for the K x-ray lines, but only very limited information is available for the M x-ray lines.


2021 ◽  
pp. 201-205
Author(s):  
R.I. Pomatsalyuk ◽  
V.A. Shevchenko ◽  
D.V. Titov ◽  
A.Eh. Tenishev ◽  
V.L. Uvarov ◽  
...  

When conducting an industrial radiation processes at an electron accelerator, a part of the beam energy is trans-formed into bremsstrahlung radiation. In such a way, the mixed e,X-radiation is formed in the area behind an irra-diated object. The intensity of the electron and photon components in the radiation is determined by the energy and power of the primary electron beam, as well as by the parameters of the object and devices located behind it. In paper, the characteristics of the e,X-radiation accompanying the product processing by a scanning electron beam with energy 8…12 MeV at a LU-10 Linac of NSC KIPT are studied. The conditions for obtaining a source of sec-ondary X-rays in the state of electronic equilibrium, as well as its monitoring using an extended free-air ionization chamber are explored. Such an extra-source of radiation can be used for carrying out various non-commercial pro-grams like radiation tests, sanitization of archival materials and cultural heritage objects, etc.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Some of these could also be operated in the energy range above lOMeV for experiments designed to determine at which energy level radioactivity can be induced in the irradiated medium. A linac with a maximum energy of 25 MeV was commissioned for the U.S. Army Natick Research and Development Labora­ tories in 1963. Its beam power was 6.5 kW at an electron energy of 10 MeV, 18 kW at 24 MeV. Assuming 100% efficiency, a 1-kW beam can irradiate 360 kg of product with a dose of 10 kGy/h. The efficiency of electron accelerators is higher than that of gamma sources because the electron beam can be directed at the product, whereas the gamma sources emit radiation in all directions. An efficiency of 50% is a realistic assumption for accelerator facilities. With that and 6.5 kW beam power an accelerator of the type built for the Natick laboratories can process about 1.2t/h at 10 kGy. In Odessa in the former Soviet Union, now in the Ukraine, two 20-kW accelerators with an energy of 1.4 MeV installed next to a grain elevator went into operation in 1983. Each accelerator has the capacity to irradiate 200 t of wheat per hour with a dose of 200 Gy for insect disinfestation. This corresponds to a beam utilization of 56% (9). In France, a facility for electron irradiation of frozen deboned chicken meat commenced operation at Berric near Vannes (Brittany) in late 1986. The purpose of irradiation is to improve the hygienic quality of the meat by destroying salmonella and other disease-causing (pathogenic) microorganisms. The electron beam accelerator is a 7 MeV/10 kW Cassitron built by CGR-MeV (10). An irradiation facility of this type is shown in Figure . Because of their relatively low depth of penetration electron beams cannot be used for the irradiation of animal carcasses, large packages, or other thick materials. However, this difficulty can be overcome by converting the electrons to x-rays. As indicated in Figure 9, this can be done by fitting a water-cooled metal plate to the scanner. Whereas in conventional x-ray tubes the conversion of electron energy to x-ray energy occurs only with an efficiency of about %, much higher efficiencies can be achieved in electron accelerators. The conversion efficiency depends on the material of the converter plate (target) and on the electron energy. Copper converts 5-MeV electrons with about 7% efficiency, 10-MeV electrons with 12% efficiency. A tungsten target can convert 5-MeV electrons with about 20%, 10-MeV electrons with 30% efficiency. (Exact values depend on target thickness.) In contrast to the distinct gamma radiation energy emitted from radionuclides and to the monoenergetic electrons produced by accelerators, the energy spectrum of x-rays is continuous from the value equivalent to the energy of the bombarding electrons to zero. The intensity of this spectrum peaks at about one-tenth of the maximum energy value. The exact location of the intensity peak depends on the thickness of the converter plate and on some other factors. As indicated in Figure

1995 ◽  
pp. 40-40

2001 ◽  
Vol 7 (S2) ◽  
pp. 698-699
Author(s):  
Robert A. Carlton ◽  
Charles E. Lyman ◽  
James E. Roberts ◽  
Raynald Gauvin

A number of methods have been proposed to correct for the electron beam scattering effects on xray microanalysis in the environmental scanning electron microscope (ESEM). This paper presents an evaluation of two of these methods. The Doehne method is based on the observation that x-ray counts due to the unscattered electron beam increase with decreasing chamber pressure whereas the inverse is true for x-ray counts due to scattered electrons. The x-ray count intercept, at zero pressure, of the regression lines relating x-ray counts to chamber vapor pressure is an estimate of the high-vacuum intensity. The Gauvin method is based on the relationship between x-ray counts and the fraction of the electron beam that is unscattered, fp.The fraction of the unscattered beam is calculated using an equation derived from scattering theory and uses the accelerating voltage, the gas path length, and the chamber vapor pressure.


2007 ◽  
Vol 22 (23) ◽  
pp. 4270-4279
Author(s):  
A. BACCI ◽  
C. MAROLI ◽  
V. PETRILLO ◽  
L. SERAFNI ◽  
M. FERRARIO

The interaction between high-brilliance electron beams and counter-propagating laser pulses produces X rays via Thomson back-scattering. If the laser source is long and intense enough, the electrons of the beam can bunch and a regime of collective effects can establish. In this case of dominating collective effects, the FEL instability can develop and the system behaves like a free-electron laser based on an optical undulator. Coherent X-rays can be irradiated, with a bandwidth very much thinner than that of the corresponding incoherent emission. The emittance of the electron beam and the distribution of the laser energy are the principal quantities that limit the growth of the X-ray signal. In this work we analyse with a 3-D code the transverse effects in the emission produced by a relativistic electron beam when it is under the action of an optical laser pulse and the X-ray spectra obtained. The scalings typical of the optical wiggler, characterized by very short gain lengths and overall time durations of the process make possible considerable emission also with emittance of the order of 1mm mrad.


Sign in / Sign up

Export Citation Format

Share Document