Effect of Thermomechanical Treatment on the Grain Boundary Structure in Pure Aluminum

Author(s):  
Eswarahalli Venkatesh ◽  
L.E. Murr

In recent years, many researchers have shown great interest in understanding the structure of grain boundaries and their influence on the mechanical properties in metals and alloys. In recent years, the structure of grain boundaries and their control have been considered as a means of understanding the strengthening mechanisms in metals and alloys. There are many ways by which the grain boundary structure can be changed both in pure metals and alloys. One such means considered here is the thermomechanical treatment of pure metals.In the present work, high purity (99.9999%) aluminum sheet, mill rolled to 0.004 in. thick, is used. The as-received condition of the sample was flash-annealed at 903°K in an argon atmosphere. Batch specimens from this stock were cold rolled to 50% reduction in thickness and annealed in air at 903°K followed by either furnace cooling or air cooling to room temperature.

Author(s):  
L. E. Murr

Many models of grain boundaries in metals and alloys have been developed in attempts to interpret their properties and observed structures. Because of the complexity of grain boundary structure, it is generally possible to apply any of the proposed models in any material, and to describe grain boundaries as possessing dislocation structures, ledges, protrusions, island structures, facets, coincidence regions which exhibit good atomic fit and establish a kind of superlattice array, and combinations of these structural features.The dislocation nature of small angle grain boundaries is well known, consisting of tilt or twist arrays or combinations of edge or screw dislocations.


1997 ◽  
Vol 492 ◽  
Author(s):  
H. Van Swygenhoven ◽  
M. Spaczér ◽  
A. Caro

ABSTRACTMolecular dynamics computer simulations of high load plastic deformation at temperatures up to 500K of Ni nanophase samples with mean grain size of 5 nm are reported. Two types of samples are considered: a polycrystal nucleated from different seeds, each having random location and random orientation, representing a sample with mainly high angle grain boundaries, and polycrystals with seeds located at the same places as before, but with a limited missorientation representing samples with mainly low angle grain boundaries. The structure of the grain boundaries is studied by means of pair distribution functions, coordination number, atom energetics, and common neighbour analysis. Plastic behaviour is interpreted in terms of grain-boundary viscosity, controlled by a self diffusion mechanism at the disordered interface activated by thermal energy and stress.


2004 ◽  
Vol 10 (S02) ◽  
pp. 304-305 ◽  
Author(s):  
James P Buban ◽  
Katsuyuki Matsunaga ◽  
Takahisa Yamamoto ◽  
Yuichi Ikuhara

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


2010 ◽  
Vol 17 (3) ◽  
pp. 350-361
Author(s):  
C.J. Boehlert ◽  
S.C. Longanbach

AbstractUdimet 188 was subjected to thermomechanical processing (TMP) in an attempt to understand the effects of cold-rolling deformation on the microstructure and tensile-creep behavior. Commercially available sheet was cold rolled to varying amounts of deformation (between 5–35% reduction in sheet thickness) followed by a solution treatment at 1,464 K (1,191°C) for 1 h and subsequent air cooling. This sequence was repeated four times to induce a high-volume fraction of low-energy grain boundaries. The resultant microstructure was characterized using electron backscattered diffraction. The effect of the TMP treatment on the high-temperature [1,033–1,088 K (760–815°C)] creep behavior was evaluated. The measured creep stress exponents (6.0–6.8) suggested that dislocation creep was dominant at 1,033 K (760°C) for stresses ranging between 100–220 MPa. For stresses ranging between 25–100 MPa at 1,033 K (760°C), the stress exponents (2.3–2.8) suggested grain boundary sliding was dominant. A significant amount of grain boundary cracking was observed both on the surface and subsurface of deformed samples. To assess the mechanisms of crack nucleation, in situ scanning electron microscopy was performed during the elevated-temperature tensile-creep deformation. Cracking occurred preferentially along general high-angle grain boundaries (GHAB) and less than 25% of the cracks were found on low-angle grain boundaries (LAB) and coincident site lattice boundaries (CSLB). Creep rupture experiments were performed at T = 1,088 K (815°C) and σ = 165 MPa and the greatest average time-to-rupture was exhibited by the TMP sheet with the greatest fraction of LAB+CSLB. However, a clear correlation was not exhibited between the grain boundary character distribution and the minimum creep rates. The findings of this work suggest that although grain boundary engineering may be possible for this alloy, simply relating the fraction of grain boundary types to the creep resistance is not sufficient.


1991 ◽  
Vol 05 (19) ◽  
pp. 2989-3028 ◽  
Author(s):  
E.I. RABKIN ◽  
L.S. SHVINDLERMAN ◽  
B.B. STRAUMAL

Recent theories of grain boundary structure have been reviewed briefly. The possibility of existence of the same variety of phase transitions on grain boundaries as that on the crystal external surface has been demonstrated. Recent experimental data and theoretical models concerning grain boundary phase transitions are critically analysed. Grain boundary phase transitions connected with the formation of thin disordered layers on the boundary (prewetting, premelting) are particularly distinguished. Results of recent indirect experiments, which may be treated in terms of prewetting and premelting, have been reviewed. Experimentally observed critical phenomena in the vicinity of the prewetting transition on the tin-germanium interphase boundary have been discussed in terms of the critical exponents theory. Some ideas regarding directions of further research are presented.


1990 ◽  
Vol 5 (5) ◽  
pp. 919-928 ◽  
Author(s):  
S. E. Babcock ◽  
D. C. Larbalestier

Regular networks of localized grain boundary dislocations (GBDs) have been imaged by means of transmission electron microscopy in three different types of high-angle grain boundaries in YBa2Cu3O7-δ, implying that these boundaries possess ordered structures upon which a significant periodic strain field is superimposed. The occurrence of these GBD networks is shown to be consistent with the GBD/Structural Unit and Coincidence Site Lattice (CSL)/Near CSL descriptions for grain boundary structure. Thus, these dislocations appear to be intrinsic features of the boundary structure. The spacing of the observed GBDs ranged from ∼10 nm to ∼100 nm. These GBDs make the grain boundaries heterogeneous on a scale that approaches the coherence length and may contribute to their weak-link character by producing the “superconducting micro-bridge” microstructure which has been suggested on the basis of detailed electromagnetic measurements on similar samples.


2007 ◽  
Vol 121-123 ◽  
pp. 1241-1244 ◽  
Author(s):  
Dong Seok Seo ◽  
Hwan Kim ◽  
Jong Kook Lee

In this study, it was demonstrated how second phases with small amount, which are hardly detected by XRD analysis, affect grain boundary dissolution and related mechanical properties of HA. All HA disks sintered at 1200 oC for 2 h in air with under moisture protection were phase pure and had Ca/P molar ratio of 1.67. Following certain period of exposure to the distilled water, the surface dissolution initiated at grain boundaries and particle loosening, subsequently resulting in decrease in mechanical properties of HA. In order to understand the dissolution mechanism, grain boundary structure of HA was identified by transmission electron microscopy (TEM) and high resolution TEM observation. From the analysis, it was found that the non-stoichiometric phase as α-tricalcium phosphate (TCP) transformed from β-TCP was existed at grain boundaries and caused surface dissolution of HA. From the XRD analysis, it was found that (211) and (112) planes of hydroxyapatite were susceptible to dissolution, whereas (300) plane was relatively stable.


1995 ◽  
Vol 391 ◽  
Author(s):  
M. Hasunuma ◽  
H. Toyoda ◽  
T. Kawanoue ◽  
S. Ito ◽  
H. Kaneko ◽  
...  

AbstractIn order to clarify the relationship between Al line reliability and film microstructure, especially grain boundary structure and crystal texture, we have tested three kinds of highly textured Al lines, namely, single-crystal Al line, quasi-single-crystal Al line and hypertextured Al line, and two kinds of conventional Al lines deposited on TiN/Ti and on SiO2. Consequently, the empirical relation between the electromigration (EM) lifetime of Al line † and the (111) full width at half maximum (FWHM) value ω is described by † ∝ ω-2 [1]. This improvement of Al line reliability results from as following reasons; firstly, homogeneous microstructure and high activation energy of 1.28eV for the single-crystal Al line (ω=0.18°); secondly, sub-grain boundaries which consisted of dislocation arrays found in the quasi-single-crystal Al line (ω=0.26°) has turned out to be no more effective mass transport paths because dislocation lines are perpendicular to the direction of electron wind. Although there exist plural grain boundary diffusion paths in the newly developed hypertextured Al line (ω=0.5°) formed by using an amorphous Ta-Al underlayer {1], the vacancy flux along the line has been suppressed to the same order of magnitude of single crystal line. It has been clarified that the decrease of FWHM value has promoted the formation of sub-grain boundaries and low-angle boundaries with detailed orientation analysis of individual grains in the hypertextured film. The longer EM lifetime for the hypertextured Al line is considered to be due to the small grain boundary diffusivities for these stable grain boundaries, and this diffusivity reduction resulted in the suppression of void/hillock pair in the Al lines. These results have confirmed that controlling texture and/or grain boundary itself is a promising approach to develop reliable Al lines which withstand higher current densities required in future ULSIs.


1999 ◽  
Vol 5 (S2) ◽  
pp. 792-793
Author(s):  
J.A. Zaborac ◽  
J.P. Buban ◽  
H.O. Moltaji ◽  
S. Stemmer ◽  
N.D. Browning

Grain boundaries have long been known to have a dominant effect on the electronic properties of polycrystalline materials. In the case of electroceramic oxides, the thermodynamics of defect formation (vacancies or interstitials, cations or anions) are usually invoked to predict the presence of a space charge potential at the grain boundaries. The relative energetics for the formation of each type of defect determines the size and sign of this potential barrier and thus, the effect that boundaries have on the overall electronic properties of the materials. However, a limitation to this continuum thermodynamics approach is that it does not consider the effect of the grain boundary structure.To investigate whether the grain boundary atomic structure can have an effect on the energetics of defect formation and hence the electronic properties, here we examine the structure of Σ5 boundaries in two systems, SrTiO3 (perovskite) and TiO2(rutile).


Sign in / Sign up

Export Citation Format

Share Document