μCT-Based Analysis of the Solid Phase in Foams: Cell Wall Corrugation and other Microscopic Features

2015 ◽  
Vol 21 (5) ◽  
pp. 1361-1371 ◽  
Author(s):  
Samuel Pardo-Alonso ◽  
Eusebio Solórzano ◽  
Jerome Vicente ◽  
Loes Brabant ◽  
Manuel L. Dierick ◽  
...  

AbstractThis work presents a series of three-dimensional computational methods with the objective of analyzing and quantifying some important structural characteristics in a collection of low-density polyolefin-based foams. First, the solid phase tortuosity, local thickness, and surface curvature, have been determined over the solid phase of the foam. These parameters were used to quantify the presence of wrinkles located at the cell walls of the foams under study. In addition, a novel segmentation technique has been applied to the continuous solid phase. This novel method allows performing a separate analysis of the constituting elements of this phase, that is, cell struts and cell walls. The methodology is based on a solid classification algorithm and evaluates the local topological dissimilarities existing between these elements. Thanks to this method it was possible to perform a separate analysis of curvature, local thickness, and corrugation ratio in the solid constituents that reveals additional differences that were not detected in the first analysis of the continuous structure. The methods developed in this work are applicable to other types of porous materials in fields such as geoscience or biomedicine.

2020 ◽  
Vol 9 (5) ◽  
pp. 214-221
Author(s):  
H. Bokhari-Taieb Brahimi ◽  
D. E. Aizi ◽  
A. Bouhafsoun ◽  
K. Hachem ◽  
R. Mezemaze ◽  
...  

Retama monosperma is a fabaceous shrub that colonizes dune sands owing to its particularly important root system at depth and on the surface. It establishes symbiotic associations with rhizobia and thus plays a role in the bio -fertilization of soils. The stem fibers of R. monosperma are an interesting material for industry because of their useful biometric, physical, chemical and structural characteristics. The aim of this study was to complete these data with a biochemical analysis of the cell walls tissues of adult branches of R. monosperma. Cellulose, hemicelluloses and pectins were extracted from cell wall. The weight dosage indicated that cellulose remained the major component of the wall (56% from the crude cell wall and 52% from the delignified cell wall) ahead of hemicelluloses (16% from the crude cell wall and 14% from the delignified cell wall) and pectins (5.6% from the crude cell wall and 5% from the delignified cell wall for water extract pectins and 3% from the crude cell wall and 2.4% from the delignified cell wall for oxalate extract pectins). The colorimetric assay of pectins extracted from lignified cell wall of R. monosperma suggested presence of more uronic acids (14.95µg/mL) than pectins extracted from a delignified cell wall (12.37 µg/mL). Gas chromatographic analysis of hemicellulosic extracts showed the presence of xylose as the major ose (54.7% from the crude cell wall and 46.7% from the delignified cell wall). Pectins were represented by homogalacturonan chains and rhamnogalacturonans 1. Data generated in this study are helpful for valorization of this plant.


2004 ◽  
Vol 82 (8) ◽  
pp. 1074-1088 ◽  
Author(s):  
R. Larry Peterson ◽  
Hugues B Massicotte

The roots or other subterranean organs of most plants develop symbioses, mycorrhizas, with fungal symbionts. Historically, mycorrhizas have been placed into seven categories based primarily on structural characteristics. A new category has been proposed for symbiotic associations of some leafy liverworts. An important feature of mycorrhizas is the interface involved in nutrient exchange between the symbionts. With the exception of ectomycorrhizas, in which fungal hyphae remain external to plant cell walls, all mycorrhizas are characterized by fungal hyphae breaching cell walls but remaining separated from the cell cytoplasm by a plant-derived membrane and an interfacial matrix that forms an apoplastic compartment. The chemical composition of the interfacial matrix varies in complexity. In arbuscular mycorrhizas (both Arum-type and Paris-type), molecules typical of plant primary cell walls (i.e., cellulose, pectins, β-1,3-glucans, hydroxyproline-rich glycoproteins) are present. In ericoid mycorrhizas, only rhamnogalacturonans occur in the interfacial matrix surrounding intracellular hyphal complexes. The matrix around intracellular hyphal complexes in orchid mycorrhizas lacks plant cell wall compounds until hyphae begin to senesce, then molecules similar to those found in primary cell walls are deposited. The interfacial matrix has not been studied in arbutoid mycorrhizas and ectendomycorrhizas. In ectomycorrhizas, the apoplastic interface consists of plant cell wall and fungal cell wall; alterations in these may enhance nutrient transfer. In all mycorrhizas, nutrients must pass into the symplast of both partners at some point, and therefore current research is exploring the nature of the opposing membranes, particularly in relation to phosphorus and sugar transporters.Key words: interface, apoplastic compartment, Hartig net, arbuscule, intracellular complex, nutrient exchange.


2017 ◽  
Vol 52 (8) ◽  
pp. 1121-1135
Author(s):  
Youming Chen ◽  
Raj Das ◽  
Mark Battley

Compared with regular honeycombs, irregular honeycombs are more representative of real foams, and thus more suitable for the study of foam mechanics. In this paper, the deformation and failure progression in the irregular honeycombs are investigated by analysing the images captured in order to gain an improved understanding on foam failure. Irregular honeycombs with varying cell wall thickness, cell size and cell shape were manufactured using a three-dimensional printer and tested under compression. The behaviour of irregular honeycombs is found to be different from that of regular honeycombs. In irregular honeycombs, cell walls start to fracture at some point, initially at a low speed from multiple locations. The global stress reaches its maximum value shortly after the first fracture of cell walls. Only a few cell walls buckle in the specimens with cells of irregular shape. Fracture is more likely to occur to thin and long cell walls aligned within a medium angle (around 30 to 60°) to the compressive load. However, the susceptibility of a cell wall is to fracture is also affected by its neighbouring cell walls. Strong and stiff neighbouring cell walls could shield load away and protect it from breaking. Because of this, it is better to think of a weak spot as a region, rather than an individual cell or cell wall. Overall, the more uniform cell wall size and thickness are, the better the mechanical performance of cellular solids is.


2019 ◽  
Vol 816 ◽  
pp. 214-218
Author(s):  
Ivan R. Lednev ◽  
K.V. Apryatina ◽  
L.A. Smirnova

A novel method to obtain porous three-dimensional chitosan-based matrices has been developed. The structure is characterized by an interconnected system of pores, with controlled diameter by varying the concentration of chitosan and the nature of the solvent. The material is biodegradable, biocompatible, with high adhesion to fibroblasts and promotes its proliferation.


1999 ◽  
Vol 591 ◽  
Author(s):  
J.H. Kinney ◽  
D.L. Haupt ◽  
J.D. Lemay

ABSTRACTThe goal of this study was to develop a three–dimensional imaging method for studies of deformation in low-density materials during loading, and to implement finite element solutions of the elastic equations based on the images. Specimens of silica–reinforced polysiloxane foam pads, 15 mm in diameter by 1 mm thick, were used for this study. The nominal pore density was 50%, and the pores approximated interconnected spheres. The specimens were imaged with microtomography at ∼16µm resolution. A rotating stage with micrometer driven compression allowed imaging of the foams during deformation with precise registration of the images. A finite element mesh, generated from the image voxels, was used to calculate the mechanical properties of the structure, and the results were compared with conventional mechanical testing. The foam exhibited significant nonlinear behavior with compressive loading. The finite-element calculations from the images, which were in excellent agreement with experimental data, suggested that nonlinear behavior in the load displacement curves arises from buckling of the cell walls during compression and not from any nonlinear properties of the base elastomer. High–resolution microtomography, coupled with efficient finite–element modeling, shows promise for improving our understanding of the deformation behavior of cellular materials.


2005 ◽  
Vol 85 (3) ◽  
pp. 255-267 ◽  
Author(s):  
P. Yu ◽  
J. J. McKinnon ◽  
D. A. Christensen

Ferulic acid (3-methoxy-4-hydroxycinnamic acid), present in complex plant cell walls, is covalently cross-linked to polysaccharides by ester bonds and to components of lignin mainly by ether bonds. Ferulic acid has also been shown to occur in dimer- and trimerized forms through oxidative coupling between esterified and/or etherified ferulic acid residues. These cross-links are among the factors most inhibitory to digestion of complex plant cell walls in ruminants. Recently obtained information on ferulic acid and ferulic acid esterases in relation to complex plant cell wall biodegradation is reviewed. A focus of the review is on structural characteristics of plant cell walls associated with ferulic acid, physicochemical properties of ferulic acid esterase and synergistic interaction between ferulic acid esterase and other accessary cell wall degrading enzymes on the release of ferulic acid and plant cell wall biodegradation. Key words: Ferulic acid, hydroxycinnamic acid, feruloyl esterase, interaction effects, polysaccharide, feruloyl-polysaccharides, plant cell walls, biodegradation


2017 ◽  
Vol 199 (7) ◽  
Author(s):  
Dev K. Ranjit ◽  
Matthew A. Jorgenson ◽  
Kevin D. Young

ABSTRACT Peptidoglycan is a vital component of nearly all cell wall-bearing bacteria and is a valuable target for antibacterial therapy. However, despite decades of work, there remain important gaps in understanding how this macromolecule is synthesized and molded into a three-dimensional structure that imparts specific morphologies to individual cells. Here, we investigated the particularly enigmatic area of how peptidoglycan is synthesized and shaped during the first stages of creating cell shape de novo, that is, in the absence of a preexisting template. We found that when lysozyme-induced (LI) spheroplasts of Escherichia coli were allowed to resynthesize peptidoglycan, the cells divided first and then elongated to recreate a normal rod-shaped morphology. Penicillin binding protein 1B (PBP1B) was critical for the first stage of this recovery process. PBP1B synthesized peptidoglycan de novo, and this synthesis required that PBP1B interact with the outer membrane lipoprotein LpoB. Surprisingly, when LpoB was localized improperly to the inner membrane, recovering spheroplasts synthesized peptidoglycan and divided but then propagated as amorphous spheroidal cells, suggesting that the regeneration of a normal rod shape depends on a particular spatial interaction. Similarly, spheroplasts carrying a PBP1B variant lacking transpeptidase activity or those in which PBP1A was overproduced could synthesize new peptidoglycan and divide but then grew as oddly shaped spheroids. We conclude that de novo cell wall synthesis requires the glycosyltransferase activity of PBP1B but that PBP1B transpeptidase activity is needed to assemble cell walls with wild-type morphology. IMPORTANCE Bacterial cell wall peptidoglycan is synthesized and modified by penicillin binding proteins (PBPs), which are targeted by about half of all currently prescribed antibiotics, including penicillin and its derivatives. Because antibiotic resistance is rising, it has become increasingly urgent that we fill the gaps in our knowledge about how PBPs create and assemble this protective wall. We report here that PBP1B plays an essential role in synthesizing peptidoglycan in the absence of a preexisting template: its glycosyltransferase activity is responsible for de novo synthesis, while its transpeptidase activity is required to construct cell walls of a specific shape. These results highlight the importance of this enzyme and distinguish its biological roles from those of other PBPs and peptidoglycan synthases.


2020 ◽  
Author(s):  
Alexis J. Apostolos ◽  
Julia M. Nelson ◽  
Marcos M. Pires

AbstractBacterial cell walls contain peptidoglycan (PG), a scaffold that provides proper rigidity to resist lysis from internal osmotic pressure and a barrier to protect cells against external stressors. It consists of repeating sugar units with a linkage to a stem peptide that becomes highly crosslinked by cell wall transpeptidases (TP). Because it is an essential component of the bacterial cell, the PG biosynthetic machinery is often the target of antibiotics. For this reason, cellular probes that advance our understanding of PG biosynthesis and its maintenance can be powerful tools to reveal novel drug targets. While synthetic PG fragments containing L-Lysine in the 3rd position on the stem peptide are easier to access, those with meso-diaminopimelic acid (m-DAP) pose a severe synthetic challenge. Herein, we describe a solid phase synthetic scheme based on the widely available Fmoc-protected L-Cysteine building block to assemble meso-cystine (m-CYT), which mimics key structural features of m-DAP. To demonstrate proper mimicry of m-DAP, cell wall probes were synthesized with m-CYT in place of m-DAP and evaluated for their metabolic processing in live bacterial cells. We found that m-CYT-based cell wall probes were properly processed by TPs in various bacterial species that endogenously contain m-DAP in their PG. We anticipate that this strategy, which is based on the use of inexpensive and commercially available building blocks, can be widely adopted to provide greater accessibility of PG mimics for m-DAP containing organisms.


Sign in / Sign up

Export Citation Format

Share Document