scholarly journals Characterization by Scanning Electron Microscopy on Drill Boride and Drilling Performance of Tool Steels

2020 ◽  
Vol 26 (S2) ◽  
pp. 388-390
Author(s):  
Victor Olmos Domínguez ◽  
Marco Doñu Ruiz ◽  
Noe Lopez Perrusquia ◽  
Leopoldo Garcia Vanegas
2014 ◽  
Vol 802 ◽  
pp. 102-107 ◽  
Author(s):  
Oscar Olimpio de Araújo Filho ◽  
Rodrigo Tecchio Antonello ◽  
Cezar Henrique Gonzalez ◽  
Severino Leopoldino Urtiga Filho ◽  
Francisco Ambrozio Filho

High speed steels processed by Powder Metallurgy (PM) techniques present better mechanical properties when compared with similar steels obtained by the conventional process of cast to ingot and hot working. PM techniques produce improved microstructures with smaller and better distribution of carbides. Liquid phase sintering high speed steel seems to be a cheaper processing route in the manufacturing of tool steels if compared to the well-known and expansive hot isostatic pressing high speed steels. The introduction of niobium as alloying element began with the object of replacing elements like vanadium (V) and tungsten (W). Phase liquid sintering consists in a manufacturing technique to process high speed steels by powder metallurgy. The aim of this work of research is to process and obtain AISI M2 and M3:2 with and without the addition of niobium carbide by high energy milling, cold uniaxial compaction and vacuum sintering in the presence of a liquid phase. The powders of the AISI M2 and M3:2 were processed by high energy milling adding a small quantity of niobium carbide (6% in mass), then the powders were characterized by means of X-ray diffraction (XRD) and scanning electron Microscopy (SEM) plus energy dispersion spectroscopy (EDS) in order to evaluate the milling process. The powders of the AISI M2 and M3:2 with the addition of niobium carbide (NbC) were uniaxially cold compacted and then submitted to vacuum sintering. The sintered samples had their microstructure, porosity and carbide distribution observed and evaluated by means of Scanning Electron Microscopy (SEM) and the mechanical property of hardness was investigated by means of Vickers hardness tests. At least five samples of each steel were investigated.


Author(s):  
P.S. Porter ◽  
T. Aoyagi ◽  
R. Matta

Using standard techniques of scanning electron microscopy (SEM), over 1000 human hair defects have been studied. In several of the defects, the pathogenesis of the abnormality has been clarified using these techniques. It is the purpose of this paper to present several distinct morphologic abnormalities of hair and to discuss their pathogenesis as elucidated through techniques of scanning electron microscopy.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Ronald H. Bradley ◽  
R. S. Berk ◽  
L. D. Hazlett

The nude mouse is a hairless mutant (homozygous for the mutation nude, nu/nu), which is born lacking a thymus and possesses a severe defect in cellular immunity. Spontaneous unilateral cataractous lesions were noted (during ocular examination using a stereomicroscope at 40X) in 14 of a series of 60 animals (20%). This transmission and scanning microscopic study characterizes the morphology of this cataract and contrasts these data with normal nude mouse lens.All animals were sacrificed by an ether overdose. Eyes were enucleated and immersed in a mixed fixative (1% osmium tetroxide and 6% glutaraldehyde in Sorenson's phosphate buffer pH 7.4 at 0-4°C) for 3 hours, dehydrated in graded ethanols and embedded in Epon-Araldite for transmission microscopy. Specimens for scanning electron microscopy were fixed similarly, dehydrated in graded ethanols, then to graded changes of Freon 113 and ethanol to 100% Freon 113 and critically point dried in a Bomar critical point dryer using Freon 13 as the transition fluid.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
J.N. Ramsey ◽  
D.P. Cameron ◽  
F.W. Schneider

As computer components become smaller the analytical methods used to examine them and the material handling techniques must become more sensitive, and more sophisticated. We have used microbulldozing and microchiseling in conjunction with scanning electron microscopy, replica electron microscopy, and microprobe analysis for studying actual and potential problems with developmental and pilot line devices. Foreign matter, corrosion, etc, in specific locations are mechanically loosened from their substrates and removed by “extraction replication,” and examined in the appropriate instrument. The mechanical loosening is done in a controlled manner by using a microhardness tester—we use the attachment designed for our Reichert metallograph. The working tool is a pyramid shaped diamond (a Knoop indenter) which can be pushed into the specimen with a controlled pressure and in a specific location.


Author(s):  
Yasushi Kokubo ◽  
Hirotami Koike ◽  
Teruo Someya

One of the advantages of scanning electron microscopy is the capability for processing the image contrast, i.e., the image processing technique. Crewe et al were the first to apply this technique to a field emission scanning microscope and show images of individual atoms. They obtained a contrast which depended exclusively on the atomic numbers of specimen elements (Zcontrast), by displaying the images treated with the intensity ratio of elastically scattered to inelastically scattered electrons. The elastic scattering electrons were extracted by a solid detector and inelastic scattering electrons by an energy analyzer. We noted, however, that there is a possibility of the same contrast being obtained only by using an annular-type solid detector consisting of multiple concentric detector elements.


Author(s):  
C. W. Kischer

The morphology of the fibroblasts changes markedly as the healing period from burn wounds progresses, through development of the hypertrophic scar, to resolution of the scar by a self-limiting process of maturation or therapeutic resolution. In addition, hypertrophic scars contain an increased cell proliferation largely made up of fibroblasts. This tremendous population of fibroblasts seems congruous with the abundance of collagen and ground substance. The fine structure of these cells should reflect some aspects of the metabolic activity necessary for production of the scar, and might presage the stage of maturation.A comparison of the fine structure of the fibroblasts from normal skin, different scar types, and granulation tissue has been made by transmission (TEM) and scanning electron microscopy (SEM).


Author(s):  
Linda M. Sicko ◽  
Thomas E. Jensen

The use of critical point drying is rapidly becoming a popular method of preparing biological samples for scanning electron microscopy. The procedure is rapid, and produces consistent results with a variety of samples. The preservation of surface details is much greater than that of air drying, and the procedure is less complicated than that of freeze drying. This paper will present results comparing conventional air-drying of plant specimens to critical point drying, both of fixed and unfixed material. The preservation of delicate structures which are easily damaged in processing and the use of filter paper as a vehicle for drying will be discussed.


Sign in / Sign up

Export Citation Format

Share Document