scholarly journals “No-dose” imaging

2021 ◽  
Vol 27 (S1) ◽  
pp. 2620-2622
Author(s):  
Heiner Friedrich
Keyword(s):  
Author(s):  
A. V. Crewe ◽  
M. Ohtsuki

We have assembled an image processing system for use with our high resolution STEM for the particular purpose of working with low dose images of biological specimens. The system is quite flexible, however, and can be used for a wide variety of images.The original images are stored on magnetic tape at the microscope using the digitized signals from the detectors. For low dose imaging, these are “first scan” exposures using an automatic montage system. One Nova minicomputer and one tape drive are dedicated to this task.The principal component of the image analysis system is a Lexidata 3400 frame store memory. This memory is arranged in a 640 x 512 x 16 bit configuration. Images are displayed simultaneously on two high resolution monitors, one color and one black and white. Interaction with the memory is obtained using a Nova 4 (32K) computer and a trackball and switch unit provided by Lexidata.The language used is BASIC and uses a variety of assembly language Calls, some provided by Lexidata, but the majority written by students (D. Kopf and N. Townes).


Author(s):  
P. Pradère ◽  
J.F. Revol ◽  
R. St. John Manley

Although radiation damage is the limiting factor in HREM of polymers, new techniques based on low dose imaging at low magnification have permitted lattice images to be obtained from very radiation sensitive polymers such as polyethylene (PE). This paper describes the computer averaging of P4MP1 lattice images. P4MP1 is even more sensitive than PE (total end point dose of 27 C m-2 as compared to 100 C m-2 for PE at 120 kV). It does, however, have the advantage of forming flat crystals from dilute solution and no change in d-spacings is observed during irradiation.Crystals of P4MP1 were grown at 60°C in xylene (polymer concentration 0.05%). Electron microscopy was performed with a Philips EM 400 T microscope equipped with a Low Dose Unit and operated at 120 kV. Imaging conditions were the same as already described elsewhere. Enlarged micrographs were digitized and processed with the Spider image processing system.


Author(s):  
P.A. Crozier ◽  
M. Pan

Heterogeneous catalysts can be of varying complexity ranging from single or double phase systems to complicated mixtures of metals and oxides with additives to help promote chemical reactions, extend the life of the catalysts, prevent poisoning etc. Although catalysis occurs on the surface of most systems, detailed descriptions of the microstructure and chemistry of catalysts can be helpful for developing an understanding of the mechanism by which a catalyst facilitates a reaction. Recent years have seen continued development and improvement of various TEM, STEM and AEM techniques for yielding information on the structure and chemistry of catalysts on the nanometer scale. Here we review some quantitative approaches to catalyst characterization that have resulted from new developments in instrumentation.HREM has been used to examine structural features of catalysts often by employing profile imaging techniques to study atomic details on the surface. Digital recording techniques employing slow-scan CCD cameras have facilitated the use of low-dose imaging in zeolite structure analysis and electron crystallography. Fig. la shows a low-dose image from SSZ-33 zeolite revealing the presence of a stacking fault.


2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Yu-Hao Deng

High-resolution TEM (HRTEM) is a powerful tool for structure characterization. However, methylammonium lead iodide (MAPbI3) perovskite is highly sensitive to electron beams and easily decomposes into lead iodide (PbI2). Misidentifications, such as PbI2 being incorrectly labeled as perovskite, are widely present in HRTEM characterization and would negatively affect the development of perovskite research field. Here misidentifications in MAPbI3 perovskite are summarized, classified, and corrected based on low-dose imaging and electron diffraction (ED) simulations. Corresponding crystallographic parameters of intrinsic tetragonal MAPbI3 and the confusable hexagonal PbI2 are presented unambiguously. Finally, the method of proper phase identification and some strategies to control the radiation damage in HRTEM are provided. This warning paves the way to avoid future misinterpretations in HRTEM characterization of perovskite and other electron beam-sensitive materials.


2006 ◽  
Vol 120 (1-4) ◽  
pp. 144-147 ◽  
Author(s):  
G. Gambarini ◽  
M. Carrara ◽  
S. Gay ◽  
S. Tomatis

Sign in / Sign up

Export Citation Format

Share Document