The AMINO experiment: RNA stability under solar radiation studied on the EXPOSE-R facility of the International Space Station

2014 ◽  
Vol 14 (1) ◽  
pp. 99-103 ◽  
Author(s):  
Jacques Vergne ◽  
Hervé Cottin ◽  
Laura da Silva ◽  
André Brack ◽  
Didier Chaput ◽  
...  

AbstractCareful examination of the present metabolism and in vitro selection of various catalytic RNAs strongly support the RNA world hypothesis as a crucial step of the origins and early life evolution. Small functional RNAs were exposed from 10 March 2009 to 21 January 2011 to space conditions on board the International Space Station in the EXPOSE-R mission. The aim of this study was to investigate the preservation or modification properties such as integrity of RNAs after space exposition. The exposition to the solar radiation has a strong degradation effect on the size distribution of RNA. Moreover, the comparison between the in-flight samples, exposed to the Sun and not exposed, indicates that the solar radiation degrades RNA bases.

2014 ◽  
Vol 14 (1) ◽  
pp. 67-77 ◽  
Author(s):  
H. Cottin ◽  
K. Saiagh ◽  
Y.Y. Guan ◽  
M. Cloix ◽  
D. Khalaf ◽  
...  

AbstractThe study of the evolution of organic matter subjected to space conditions, and more specifically to Solar photons in the vacuum ultraviolet range (120–200 nm) has been undertaken in low-Earth orbit since the 1990s, and implemented on various space platforms. This paper describes a photochemistry experiment called AMINO, conducted during 22 months between 2009 and 2011 on the EXPOSE-R ESA facility, outside the International Space Station. Samples with relevance to astrobiology (connected to comets, carbonaceous meteorites and micrometeorites, the atmosphere of Titan and RNA world hypothesis) have been selected and exposed to space environment. They have been analysed after return to the Earth. This paper is not discussing the results of the experiment, but rather gives a general overview of the project, the details of the hardware used, its configuration and recent developments to enable long-duration exposure of gaseous samples in tight closed cells enabling for the first time to derive quantitative results from gaseous phase samples exposed in space.


mSphere ◽  
2016 ◽  
Vol 1 (5) ◽  
Author(s):  
Benjamin P. Knox ◽  
Adriana Blachowicz ◽  
Jonathan M. Palmer ◽  
Jillian Romsdahl ◽  
Anna Huttenlocher ◽  
...  

ABSTRACT As durations of manned space missions increase, it is imperative to understand the long-term consequence of microbial exposure on human health in a closed human habitat. To date, studies aimed at bacterial and fungal contamination of space vessels have highlighted species compositions biased toward hardy, persistent organisms capable of withstanding harsh conditions. In the current study, we assessed traits of two independent Aspergillus fumigatus strains isolated from the International Space Station. Ubiquitously found in terrestrial soil and atmospheric environments, A. fumigatus is a significant opportunistic fungal threat to human health, particularly among the immunocompromised. Using two well-known clinical isolates of A. fumigatus as comparators, we found that both ISS isolates exhibited normal in vitro growth and chemical stress tolerance yet caused higher lethality in a vertebrate model of invasive disease. These findings substantiate the need for additional studies of physical traits and biological activities of microbes adapted to microgravity and other extreme extraterrestrial conditions. One mission of the Microbial Observatory Experiments on the International Space Station (ISS) is to examine the traits and diversity of fungal isolates to gain a better understanding of how fungi may adapt to microgravity environments and how this may affect interactions with humans in a closed habitat. Here, we report an initial characterization of two isolates, ISSFT-021 and IF1SW-F4, of Aspergillus fumigatus collected from the ISS and a comparison to the experimentally established clinical isolates Af293 and CEA10. Whole-genome sequencing of ISSFT-021 and IF1SW-F4 showed 54,960 and 52,129 single nucleotide polymorphisms, respectively, compared to Af293, which is consistent with observed genetic heterogeneity among sequenced A. fumigatus isolates from diverse clinical and environmental sources. Assessment of in vitro growth characteristics, secondary metabolite production, and susceptibility to chemical stresses revealed no outstanding differences between ISS and clinical strains that would suggest special adaptation to life aboard the ISS. Virulence assessment in a neutrophil-deficient larval zebrafish model of invasive aspergillosis revealed that both ISSFT-021 and IF1SW-F4 were significantly more lethal than Af293 and CEA10. Taken together, these genomic, in vitro, and in vivo analyses of two A. fumigatus strains isolated from the ISS provide a benchmark for future investigations of these strains and for continuing research on specific microbial isolates from manned space environments. IMPORTANCE As durations of manned space missions increase, it is imperative to understand the long-term consequence of microbial exposure on human health in a closed human habitat. To date, studies aimed at bacterial and fungal contamination of space vessels have highlighted species compositions biased toward hardy, persistent organisms capable of withstanding harsh conditions. In the current study, we assessed traits of two independent Aspergillus fumigatus strains isolated from the International Space Station. Ubiquitously found in terrestrial soil and atmospheric environments, A. fumigatus is a significant opportunistic fungal threat to human health, particularly among the immunocompromised. Using two well-known clinical isolates of A. fumigatus as comparators, we found that both ISS isolates exhibited normal in vitro growth and chemical stress tolerance yet caused higher lethality in a vertebrate model of invasive disease. These findings substantiate the need for additional studies of physical traits and biological activities of microbes adapted to microgravity and other extreme extraterrestrial conditions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Takafumi Matsumura ◽  
Taichi Noda ◽  
Masafumi Muratani ◽  
Risa Okada ◽  
Mutsumi Yamane ◽  
...  

Abstract The effect on the reproductive system and fertility of living in a space environment remains unclear. Here, we caged 12 male mice under artificial gravity (≈1 gravity) (AG) or microgravity (MG) in the International Space Station (ISS) for 35 days, and characterized the male reproductive organs (testes, epididymides, and accessory glands) after their return to earth. Mice caged on earth during the 35 days served as a “ground” control (GC). Only a decrease in accessory gland weight was detected in AG and MG males; however, none of the reproductive organs showed any overt microscopic defects or changes in gene expression as determined by RNA-seq. The cauda epididymal spermatozoa from AG and MG mice could fertilize oocytes in vitro at comparable levels as GC males. When the fertilized eggs were transferred into pseudo-pregnant females, there was no significant difference in pups delivered (pups/transferred eggs) among GC, AG, and MG spermatozoa. In addition, the growth rates and fecundity of the obtained pups were comparable among all groups. We conclude that short-term stays in outer space do not cause overt defects in the physiological function of male reproductive organs, sperm function, and offspring viability.


2014 ◽  
Vol 31 (4) ◽  
pp. 890-902 ◽  
Author(s):  
C. M. Roithmayr ◽  
C. Lukashin ◽  
P. W. Speth ◽  
D. F. Young ◽  
B. A. Wielicki ◽  
...  

Abstract Highly accurate measurements of Earth’s thermal infrared and reflected solar radiation are required for detecting and predicting long-term climate change. Consideration is given to the concept of using the International Space Station to test instruments and techniques that would eventually be used on a dedicated mission, such as the Climate Absolute Radiance and Refractivity Observatory (CLARREO). In particular, a quantitative investigation is performed to determine whether it is possible to use measurements obtained with a highly accurate (0.3%, with 95% confidence) reflected solar radiation spectrometer to calibrate similar, less accurate instruments in other low Earth orbits. Estimates of numbers of samples useful for intercalibration are made with the aid of yearlong simulations of orbital motion. Results of this study support the conclusion that the International Space Station orbit is ideally suited for the purpose of intercalibration between spaceborne sensors.


2005 ◽  
Author(s):  
Danielle Paige Smith ◽  
Vicky E. Byrne ◽  
Cynthia Hudy ◽  
Mihriban Whitmore

2020 ◽  
Vol 91 (1) ◽  
pp. 41-45 ◽  
Author(s):  
Virginia. E. Wotring ◽  
LaRona K. Smith

INTRODUCTION: There are knowledge gaps in spaceflight pharmacology with insufficient in-flight data to inform future planning. This effort directly addressed in-mission medication use and also informed open questions regarding spaceflight-associated changes in pharmacokinetics (PK) and/or pharmacodynamics (PD).METHODS: An iOS application was designed to collect medication use information relevant for research from volunteer astronaut crewmembers: medication name, dose, dosing frequency, indication, perceived efficacy, and side effects. Leveraging the limited medication choices aboard allowed a streamlined questionnaire. There were 24 subjects approved for participation.RESULTS: Six crewmembers completed flight data collection and five completed ground data collection before NASA’s early study discontinuation. There were 5766 medication use entries, averaging 20.6 ± 8.4 entries per subject per flight week. Types of medications and their indications were similar to previous reports, with sleep disturbances and muscle/joint pain as primary drivers. Two subjects treated prolonged skin problems. Subjects also used the application in unanticipated ways: to note drug tolerance testing or medication holiday per research protocols, and to share data with flight surgeons. Subjects also provided usability feedback on application design and implementation.DISCUSSION: The volume of data collected (20.6 ± 8.4 entries per subject per flight week) is much greater than was collected previously (<12 per person per entire mission), despite user criticisms regarding app usability. It seems likely that improvements in a software-based questionnaire application could result in a robust data collection tool that astronauts find more acceptable, while simultaneously providing researchers and clinicians with useful data.Wotring VE, Smith LK. Dose tracker application for collecting medication use data from International Space Station crew. Aerosp Med Hum Perform. 2020; 91(1):41–45.


Sign in / Sign up

Export Citation Format

Share Document