Effect of nitric oxide on Sertoli cell microtubule of piglets

2009 ◽  
Vol 6 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Yang Li ◽  
Wang Xian-zhong ◽  
Yang Meng-bo ◽  
Zhang Jia-hua

AbstractTo illustrate the effect of nitric oxide (NO) on the microtubules of Sertoli cells (SC), SCs of piglets were treated with sodium nitroprusside (SNP). Changes in cell viability, anti-oxidant activity, enzyme activity and p38 mutagen-activated protein kinase (p38MAPK) activation were detected. The results were as follows. A low concentration of NO can keep SC microtubule and cell viability normal, and a high concentration of NO could increase p38MAPK activation, decrease anti-oxidant activity and transferrin secretion, and destroy the structure and distribution of the microtubules. The results suggest that SNP treatment results in an increase in NO in SCs and decreased cell anti-oxidant activity. The high concentration of NO destroys cell microtubules by activating p38MAPK.

2004 ◽  
Vol 180 (2) ◽  
pp. 257-265 ◽  
Author(s):  
SB Meroni ◽  
MF Riera ◽  
EH Pellizzari ◽  
MN Galardo ◽  
SB Cigorraga

The gonadotropin FSH plays a key role in the control of Sertoli cell function. The FSH molecular mechanism of action is best recognized for its stimulation of the adenylyl cyclase/cAMP pathway. However, other signaling events have also been demonstrated in Sertoli cells. We have recently presented evidence that FSH can stimulate the phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB) pathway in 20-day-old Sertoli cells. At the same time, it was proposed that in 8-day-old Sertoli cells the effects of FSH on phosphorylated PKB (P-PKB) levels can be explained by a combination of increased secretion of endogenous IGF-I, decreased IGF-binding protein-3 (IGFBP-3) production, and a synergistic action of FSH on IGF-I-dependent PI3K activation. The aim of the present study was to determine whether the effect of FSH on 20-day-old Sertoli cells is mediated by IGF-I secretion. Twenty-day-old rat Sertoli cell cultures were used. FSH stimulation produced a time-dependent increment in P-PKB levels reaching maximal values in 60-min incubations. IGF-I stimulation was also time-dependent reaching maximal values in 15-min incubations. On the other hand, stimulation of the cultures with FSH showed time-dependent inhibition in phosphorylated mitogen-activated protein kinase (P-MAPK) levels. In sharp contrast, stimulation of the cultures with IGF-I showed time-dependent increments in P-MAPK levels reaching maximal stimulus in 15-min incubations. In order to rule out an IGF-I action on FSH stimulation of P-PKB levels, the effect of a specific IGF-I antibody on the ability of both hormones to increase P-PKB levels was evaluated. As expected, the antibody inhibited IGF-I stimulation of P-PKB levels. However, simultaneous addition of an IGF-I antibody with FSH did not modify the ability of the hormone to increase P-PKB levels. The next set of experiments intended to analyze the relevance of a PI3K/PKB pathway to two biological responses of Sertoli cells to FSH and IGF-I. The PI3K inhibitor, wortmannin, dose-dependently decreased FSH-stimulated lactate and transferrin production. On the other hand, wortmannin was not able to modify the ability of IGF-I to stimulate these metabolic events. In addition, the analysis of the participation of a MAPK pathway in IGF-I regulation of Sertoli cell biological responses showed that the MAPK kinase inhibitors, PD98059 and U0126, decreased IGF-I-stimulated transferrin secretion while not modifying IGF-I-stimulated lactate levels. In summary, results obtained so far support the hypothesis that FSH action on P-PKB levels and Sertoli cell metabolism in 20-day-old animals is not mediated by autocrine regulation of an IGF-I/ IGFBP-3 axis as previously proposed in 8-day-old Sertoli cells.


2001 ◽  
Vol 281 (6) ◽  
pp. H2295-H2303 ◽  
Author(s):  
Mark T. Ziolo ◽  
Hideki Katoh ◽  
Donald M. Bers

Nitric oxide (NO) can have a positive or negative effect on cardiac contractility and the ryanodine receptor (RyR). This dual effect has been explained as being dependent on the concentration of NO. We find that cellular RyR response to NO is also dependent on the degree of β-adrenergic stimulation, and thus the state of protein kinase A activation. Ca2+ spark frequency (CaSpF) in rat ventricular myocytes was used as an index of resting RyR activity. CaSpF response to β-adrenergic stimulation was used as an index of protein kinase A activation. High concentration of isoproterenol, a β-adrenergic agonist, caused a large increase in CaSpF; addition of NO (spermine NONOate, 300 μM) then caused a decrease in CaSpF. Low concentration of isoproterenol produced only a slight increase in CaSpF, but the same NO concentration now caused a large increase in CaSpF. A dual effect was also observed in twitch. Thus the net direction of the effects of NO on RyR activity and Ca2+transients (directly or by alteration of sarcoplasmic reticulum Ca2+ load) can be reversed, depending on the ambient level of β-adrenergic activation.


2002 ◽  
Vol 174 (2) ◽  
pp. 195-204 ◽  
Author(s):  
SB Meroni ◽  
MF Riera ◽  
EH Pellizzari ◽  
SB Cigorraga

The FSH molecular mechanism of action is best recognized for its stimulation of the adenylyl cyclase/cAMP pathway via activation of a G protein. Recently, links between cAMP, phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB) signaling pathways in thyroid and granulosa cells have been observed. The aim of this study was to investigate the possible role of the PI3K/PKB pathway in FSH regulation of Sertoli cell function. Twenty-day-old rat Sertoli cell cultures were used. An increase in phosphorylated PKB (P-PKB) levels in response to FSH and dibutyryl-cAMP was observed. These increments in P-PKB levels were not observed in the presence of two PI3K inhibitors, wortmannin and Ly 294002. Inhibition of protein kinase A (PKA) by H89 did not decrease FSH stimulation of P-PKB levels. Taken together, these results indicate that FSH increases P-PKB levels in a PI3K-dependent and PKA-independent manner in rat Sertoli cells. In addition, wortmannin partially inhibited the ability of FSH to stimulate two well-known parameters of Sertoli cell function - transferrin secretion and lactate production - at doses equal to or lower than 0.1 microM. Related to lactate production, a decrease in FSH stimulation of lactate dehydrogenase activity and of basal and FSH-stimulated glucose uptake was observed in the presence of wortmannin. These metabolic changes were in most cases accompanied by changes in the levels of P-PKB. Altogether, these results suggest a meaningful role of the PI3K/PKB pathway in the mechanism of action of FSH in rat Sertoli cells.


Reproduction ◽  
2007 ◽  
Vol 133 (4) ◽  
pp. 763-773 ◽  
Author(s):  
María Fernanda Riera ◽  
María Noel Galardo ◽  
Eliana Herminia Pellizzari ◽  
Silvina Beatriz Meroni ◽  
Selva Beatriz Cigorraga

Interleukin-1β (IL1β ) belongs to a set of intratesticular regulators that provide the fine-tuning of cellular processes implicated in the maintenance of spermatogenesis. The aim of the present study was to analyze the signaling pathways that may participate in IL1β regulation of Sertoli cell function. Sertoli cell cultures from 20-day-old rat were used. Stimulation of the cultures with IL1β showed increments in phosphorylated protein kinase B (PKB), P70S6K, and ERK1/2 levels. A phosphatidyl inositol 3-kinase (PI3K) inhibitor (wortmannin (W)), a mammalian target of rapamycin inhibitor (rapamycin (R)), and a MEK inhibitor (PD98059 (PD)) were utilized to evaluate the participation of PI3K/PKB, P70S6K, and ERK1/2 pathways in the regulation of lactate production by IL1β . PD and W, but not R, decreased IL1β-stimulated lactate production. The participation of these pathways in the regulation of glucose uptake and lactate dehydrogenase (LDH) A mRNA levels by IL1β was also analyzed. It was observed that W decreased IL1β-stimulated glucose uptake, whereas PD and R did not modify it. On the other hand, PD decreased the stimulation of LDH A mRNA levels by IL1β , whereas W and R did not modify it. In summary, results presented herein demonstrate that IL1β stimulates PI3K/PKB-, P70S6K-, and ERK1/2-dependent pathways in rat Sertoli cells. Moreover, these results show that while IL1β utilizes the PI3K/PKB pathway to regulate glucose transport, it utilizes the ERK1/2 pathway to regulate LDH A mRNA levels. This study reveals that IL1β utilizes different signal transduction pathways to modify the biochemical steps that are important to regulate lactate production in rat Sertoli cells.


2008 ◽  
Vol 108 (4) ◽  
pp. 643-650 ◽  
Author(s):  
Xuebing Xu ◽  
Jifeng Feng ◽  
Zhiyi Zuo

Background Isoflurane exposure before an insult can reduce the insult-induced injury in various organs. This phenomenon is called isoflurane preconditioning. The authors hypothesize that isoflurane can precondition macrophages, cells that travel to all tissues and are important in the host defense and inflammation responses. Methods Rat NR8383 macrophages were pretreated with or without 1-3% isoflurane for 1 h at 30 min before they were incubated with or without 100 ng/ml lipopolysaccharide plus 50 U/ml interferon gamma for 24 h. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was performed after cells were stained with annexin V and propidium iodide. Inducible nitric oxide synthase protein expression in macrophages was quantified by Western blotting. Results Lipopolysaccharide plus interferon gamma decreased cell viability by approximately 50%. This decrease was dose-dependently inhibited by aminoguanidine, an inducible nitric oxide synthase inhibitor. Lipopolysaccharide plus interferon gamma caused inducible nitric oxide synthase expression. This expression was inhibited by pretreatment with 2% but not 1% or 3% isoflurane. Isoflurane at 2% inhibited lipopolysaccharide plus interferon gamma-induced accumulation of nitrite, an oxidation product of nitric oxide. Pretreatment with 2% but not 1% or 3% isoflurane improved cell viability. Lipopolysaccharide plus interferon gamma increased the number of propidium iodide-positive staining cells. This increase was attenuated by 2% isoflurane pretreatment. The protective effect of 2% isoflurane was abolished by chelerythrine, calphostin C, or bisindolylmaleimide IX, protein kinase C inhibitors. Conclusions Lipopolysaccharide plus interferon gamma causes an inducible nitric oxide synthase-dependent macrophage injury. Isoflurane induces preconditioning effects that may be mediated by protein kinase C in macrophages.


1967 ◽  
Vol 55 (3) ◽  
pp. 427-439 ◽  
Author(s):  
Joh. Koudstaal ◽  
E. L. Frensdorf ◽  
J. Kremer ◽  
J. M. Mudde ◽  
M. J. Hardonk

ABSTRACT The testes of 50 subfertile and infertile males were investigated by clinical and histochemical methods. The enzyme activity per cell of interstitial cells of normal and abnormal testes was about the same. The output of the gonadotrophins of men with seriously damaged testes may be increased; the output of the oestrogens was normal and the output of 17-ketosteroids was normal or slightly decreased. Some of these patients showed a poor development of growth of the beard. The Sertoli cell is very resistant to atrophy and keeps a high enzyme activity for a long time. Besides an inhibiting effect of the steroids produced in the interstitial cells, it is also possible that under normal circumstances an inhibiting substance is produced in the Sertoli cells, which is necessary for a harmonious balance between hypophysis and testes.


2007 ◽  
Vol 39 (4) ◽  
pp. 279-288 ◽  
Author(s):  
María Noel Galardo ◽  
María Fernanda Riera ◽  
Eliana Herminia Pellizzari ◽  
Selva Beatriz Cigorraga ◽  
Silvina Beatriz Meroni

AbstractThe aim of the present study was to investigate whether the AMP-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis, is present in Sertoli cells and whether its activation by 5-aminoimidazole-4-carboxamide-1-b-d-ribonucleoside (AICAR) results in the regulation of cell metabolism to ensure lactate supply for germ cell development. Sertoli cell cultures from 20-day-old rats were used. Western blot analysis for the α-subunit of AMPK showed that high levels of AMPK are present in Sertoli cells. Treatment of the cultures with AICAR resulted in a dose- and time-dependent increase of P-AMPK levels indicating activation of the enzyme. A possible effect of AICAR on Sertoli cell lactate production was then analyzed. A dose- and time-dependent increment in lactate secretion was observed. The participation of AMPK activation in different biochemical processes that may be implicated in the regulation of lactate production was also analyzed. AICAR stimulated glucose uptake in a dose- and time-dependent manner. Additionally, AICAR increased the glucose transporter 1 (GLUT1) and decreased the glucose transporter 3 (GLUT3) mRNA levels. As for the role of AMPK in the regulation of the monocarboxylate transporters 1 and 4 (MCT1 and MCT4), it has been observed that AICAR treatment decreased MCT1 and increased MCT4 mRNA levels. In summary, the results presented herein show that AMPK is present in Sertoli cells and that its activation by AICAR increases lactate production as a result, at least in part, of a) an increase in glucose uptake, b) an increase in GLUT1 expression, and c) a decrease in MCT1 and an increase in MCT4 levels. Altogether, these results suggest an important role of AMPK in modulating the nutritional function of Sertoli cells.


1996 ◽  
Vol 318 (3) ◽  
pp. 789-795 ◽  
Author(s):  
Iosif IOANNIDIS ◽  
Michael BÄTZ ◽  
Thomas PAUL ◽  
Hans-Gert KORTH ◽  
Reiner SUSTMANN ◽  
...  

S-Nitroso-N-acetyl-dl-penicillamine (SNAP) and sodium nitroprusside (SNP), both of which are known to release nitric oxide (•NO), exhibited cytotoxicity against cultivated endothelial cells. Under hypoxic conditions 5 mM SNAP and 20 mM SNP induced a loss in cell viability of about 90% and 80% respectively, after an 8 h incubation. Under normoxic conditions, cell death was only 45% and 42% respectively within the same time period. Concentrations of •NO liberated from SNAP and SNP were measured by the oxyhaemoglobin method and by two of the recently developed nitric oxide cheletropic traps (NOCTs). The •NO concentrations from SNAP and SNP increased from 74 µM and 28 µM to 136 µM and 66 µM respectively within 15 min of hypoxic incubation, and then decreased to 36 µM and 28 µM. In the respective normoxic incubations the •NO levels from SNAP and SNP remained in the region of about 30 µM and 20 µM respectively. In contrast, spermine/NO adduct (spermineNONOate) was shown to be more toxic under normoxic than under hypoxic conditions. Under either of these conditions, the concentration of •NO liberated from 2 mM spermineNONOate was about 20 µM. The results demonstrate that the cytotoxicity of SNAP and SNP, but not of spermineNONOate, is significantly enhanced under hypoxic compared with normoxic incubations. Studies on the •NO-releasing behaviour of these compounds indicate that the increased toxicity of SNAP and SNP under hypoxic conditions is related to the influence of O2 on the chemical processes by which •NO is produced from the precursors, rather than to an increased sensitivity of the hypoxic cells towards •NO.


Sign in / Sign up

Export Citation Format

Share Document