scholarly journals The Hipparcos Catalogue: 10th anniversary and its legacy

2007 ◽  
Vol 3 (S248) ◽  
pp. 1-7
Author(s):  
C. Turon ◽  
F. Arenou

AbstractThe European Space Agency decision to include the Hipparcos satellite into its Science Programme is placed in the context of the years 1965-1980 and in the historical perspective of the progress of astrometry. The motivation and ideas which lead to the Hipparcos design are reviewed as well as its characteristics and performance. The amount and variety of applications represent an impressive evolution from the original science case and opened the way to much more ambitious further space missions, especially Gaia, based on the same basic principles. A giant step in technology led to a giant step in science. Next steps are presented at this Symposium.

2013 ◽  
Vol 117 (1197) ◽  
pp. 1075-1101 ◽  
Author(s):  
S. M. Parkes ◽  
I. Martin ◽  
M. N. Dunstan ◽  
N. Rowell ◽  
O. Dubois-Matra ◽  
...  

Abstract The use of machine vision to guide robotic spacecraft is being considered for a wide range of missions, such as planetary approach and landing, asteroid and small body sampling operations and in-orbit rendezvous and docking. Numerical simulation plays an essential role in the development and testing of such systems, which in the context of vision-guidance means that realistic sequences of navigation images are required, together with knowledge of the ground-truth camera motion. Computer generated imagery (CGI) offers a variety of benefits over real images, such as availability, cost, flexibility and knowledge of the ground truth camera motion to high precision. However, standard CGI methods developed for terrestrial applications lack the realism, fidelity and performance required for engineering simulations. In this paper, we present the results of our ongoing work to develop a suitable CGI-based test environment for spacecraft vision guidance systems. We focus on the various issues involved with image simulation, including the selection of standard CGI techniques and the adaptations required for use in space applications. We also describe our approach to integration with high-fidelity end-to-end mission simulators, and summarise a variety of European Space Agency research and development projects that used our test environment.


2011 ◽  
Vol 41 (2) ◽  
pp. 123-178 ◽  
Author(s):  
Arturo Russo

Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-1990s as an exemplar of a “flexible mission” that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.


Author(s):  
Aggelos Liapis ◽  
Evangelos Argyzoudis

The Concurrent Design Facility (CDF) of the European Space Agency (ESA) allows a team of experts from several disciplines to apply concurrent engineering for the design of future space missions. It facilitates faster and effective interaction of all disciplines involved, ensuring consistent and high-quality results. It is primarily used to assess the technical and financial feasibility of future space missions and new spacecraft concepts, though for some projects, the facilities and the data exchange model are used during later phases. This chapter focuses on the field of computer supported collaborative work (CSCW) and its supporting areas whose mission is to support interaction between people, using computers as the enabling technology. Its aim is to present the design and implementation framework of a semantically driven, collaborative working environment (CWE) that allows ESA’s CDF to be used by projects more extensively and effectively during project meetings, task forces, and reviews.


2012 ◽  
Vol 4 (5) ◽  
pp. 537-543
Author(s):  
Constantinos T. Angelis

New Global Navigation Satellite System (GNSS) systems under development, such as Galileo, are very promising for future global positioning-based applications. A vast research is undergoing a final stage of implementation in order to fulfill the primary purpose of European Space Agency for developing and then sustaining of 30 (27 + 3 spares) Galileo satellites in orbit. This article presents simulation results for a realistic deployment of multibeam antennas, with a new modified theoretical pattern, in GNSS Satellite Systems. The proposed multibeam antennas use 61-spot beams for maximum efficiency in terms of satellite coverage and accessing high quality of service. In order to prove the reliability and feasibility of this work, various simulations were conducted using the upcoming Galileo system as a platform taking into consideration real-world conditions. Gain analysis versus elevation, Bit Error Rate (BER) and access time simulation results show that the viability of the proposed multibeam antenna deployment is established.


2000 ◽  
Vol 8 (2) ◽  
pp. 243-262 ◽  
Author(s):  
Giacomo Cavallo

The article gives, first of all, a general presentation of the European Space Agency (ESA), followed by a more detailed outline of the ESA's Science Programme, its content, resources, organization, advisory structure and decision procedures. The various types of missions and the place they occupy in the programme are described. From a scientific point of view, these missions fit into four main themes of research, which are also potential ‘roadmaps’ for international collaboration. In the second part of the article, an outline is given of most of the projects that have been already undertaken, are in process or are being planned at the present time.


2020 ◽  
Author(s):  
Erica Webb ◽  
Ben Wright ◽  
Marco Meloni ◽  
Jerome Bouffard ◽  
Tommaso Parrinello ◽  
...  

<p>Launched in 2010, the European Space Agency’s (ESA) polar-orbiting CryoSat satellite was specifically designed to measure changes in the thickness of polar sea ice and the elevation of the ice sheets and mountain glaciers. Beyond the primary mission objectives, CryoSat is also valuable source of data for the oceanographic community and CryoSat’s sophisticated SAR Interferometric Radar Altimeter (SIRAL) can measure high-resolution geophysical parameters from the open ocean to the coast.</p><p>CryoSat data is processed operationally using two independent processing chains: Ice and Ocean. To ensure that the CryoSat products meet the highest data quality and performance standards, the CryoSat Instrument Processing Facilities (IPFs) are periodically updated. Processing algorithms are improved based on feedback and recommendations from Quality Control (QC) activities, Calibration and Validation campaigns, the CryoSat Expert Support Laboratory (ESL), and the Scientific Community. </p><p>Since May 2019, the CryoSat ice products are generated with Baseline-D, which represented a major processor upgrade and implemented several improvements, including the optimisation of freeboard computation in SARIn mode, improvements to sea ice and land ice retracking and the migration from Earth Explorer Format (EEF) to Network Common Data Form (NetCDF). A reprocessing campaign is currently underway to reprocess the full mission dataset (July 2010 – May 2019) to Baseline-D.</p><p>The CryoSat ocean products are also generated in NetCDF, following a processor upgrade in November 2017 (Baseline-C). Improvements implemented in this new Baseline include the generation of ocean products for all data acquisition modes, therefore providing complete data coverage for ocean users. This upgrade also implemented innovative algorithms, refined existing ones and added new parameters and corrections to the products. Following the completion of a successful reprocessing campaign, Baseline-C ocean products are now available for the full mission dataset (July 2010 – present).</p><p>Since launch, the CryoSat ice and ocean products have been routinely monitored as part of QC activities by the ESA/ESRIN Sensor Performance, Products and Algorithms (SPPA) office with the support of the Quality Assurance for Earth Observation (QA4EO) service (formerly IDEAS+) led by Telespazio VEGA UK. The latest processor updates have brought significant improvements to the quality of CryoSat ice and ocean products, which in turn are expected to have a positive impact on the scientific exploitation of CryoSat measurements over all surface types.</p><p>This poster provides an overview of the CryoSat data quality status and the QC activities performed by the QA4EO consortium, including both operational and reprocessing QC. Also presented are the main evolutions and improvements that have implemented to the processors, and anticipated evolutions for the future.</p>


Photoniques ◽  
2019 ◽  
pp. 38-43
Author(s):  
Jos De Bruijne ◽  
Matthias Erdmann

Astrometry is the astronomical discipline of measuring the positions, and changes therein, of celestial bodies. Accurate astrometry from the ground is limited by the blurring effects induced by the Earth’s atmosphere. Since decades, Europe has been at the forefront of making astrometric measurements from space. The European Space Agency (ESA) launched the first satellite dedicated to astrometry, named Hipparcos, in 1989, culminating in the release of the Hipparcos Catalogue containing astrometric data for 117 955 stars in 1997. Since mid 2014, Hipparcos’ successor, Gaia, has been collecting astrometric data, with a 100 times improved precision, for 10 000 times as many stars.


2021 ◽  
Author(s):  
Erica Webb ◽  
Jenny Marsh ◽  
Laura Benzan Valette ◽  
Jerome Bouffard ◽  
Tommaso Parrinello ◽  
...  

<p>Launched in 2010, the European Space Agency’s (ESA) polar-orbiting CryoSat satellite was specifically designed to measure changes in the thickness of polar sea ice and the elevation of the ice sheets and mountain glaciers. Beyond the primary mission objectives, CryoSat is also valuable source of data for the oceanographic community and CryoSat’s sophisticated SAR Interferometric Radar Altimeter (SIRAL) can measure high-resolution geophysical parameters from the open ocean to the coast.</p><p>CryoSat data is processed operationally using two independent processing chains: Ice and Ocean. To ensure that the CryoSat products meet the highest data quality and performance standards, the CryoSat Instrument Processing Facilities (IPFs) are periodically updated. Processing algorithms are improved based on feedback and recommendations from Quality Control (QC) activities, Calibration and Validation campaigns, the CryoSat Expert Support Laboratory (ESL), and the Scientific Community.</p><p>Since May 2019, the CryoSat ice products have been generated with Baseline-D, which represented a major processor upgrade and implemented several improvements, including the optimisation of freeboard computation in SARIn mode, improvements to sea ice and land ice retracking and the migration from Earth Explorer Format (EEF) to Network Common Data Form (NetCDF). The Baseline-D reprocessing campaign completed in May 2020, and the full mission Baseline-D dataset is now available to users (July 2010 – present). The next major processor upgrade, Baseline-E, is already under development and following testing and refinement is anticipated to be operational in Q3 2021.</p><p>The CryoSat ocean products are also generated in NetCDF, following a processor upgrade in November 2017 (Baseline-C). Improvements implemented in this baseline include the generation of ocean products for all data acquisition modes, therefore providing complete data coverage for ocean users. This upgrade also implemented innovative algorithms, refined existing ones and added new parameters and corrections to the products. Following the completion of a successful reprocessing campaign, Baseline-C ocean products are now available for the full mission dataset (July 2010 – present). Preparations are underway for the next major processor upgrade, Baseline-D.</p><p>Since launch, the CryoSat ice and ocean products have been routinely monitored as part of QC activities by the ESA/ESRIN Sensor Performance, Products and Algorithms (SPPA) office with the support of the Quality Assurance for Earth Observation (QA4EO) service (formerly IDEAS+) led by Telespazio UK. The latest processor updates have brought significant improvements to the quality of CryoSat ice and ocean products, which in turn are expected to have a positive impact on the scientific exploitation of CryoSat measurements over all surface types.</p><p>This poster provides an overview of the CryoSat data quality status and the QC activities performed by the IDEAS-QA4EO consortium, including both operational and reprocessing QC. Also presented are the main evolutions and improvements that have implemented to the processors, and anticipated evolutions for the future.</p>


1980 ◽  
Vol 56 ◽  
pp. 341-348
Author(s):  
C. A. Murray

Abstract:The HIPPARCOS Satellite, to be launched by the European Space Agency, will provide a stellar reference frame over the whole celestial sphere with an average accuracy of ± 0002 in each coordinate and component of annual proper motion, for some 100,000 stars.The origin of coordinates will be arbitrary. Absolute rotation of the system of proper motions can be obtained by measuring quasars relative to stars in the HIPPARCOS catalogue, either with the NASA Space Telescope or by conventional ground based astrometric observations.


2021 ◽  
Vol 11 (3) ◽  
pp. 948
Author(s):  
Paulo Gordo ◽  
Tiago Frederico ◽  
Rui Melicio ◽  
António Amorim

This paper has resulted from a continued study of spacecraft material degradation and space debris formation. The design and implementation of a thermal vacuum cycling cryogenic facility for the evaluation of space debris generation at a low Earth orbit (LEO) is presented. The facility used for spacecraft external material evaluation is described, and some of the obtained results are presented. The infrastructure was developed in the framework of a study for the European Space Agency (ESA). The main purpose of the cryogenic facility is to simulate the LEO spacecraft environment, namely thermal cycling and vacuum ultraviolet (VUV) irradiation to simulate the spacecraft material degradation and the generation of space debris. In a previous work, some results under LEO test conditions showed the effectiveness of the cryogenic facility for material evaluation, namely: the degradation of satellite paints with a change in their thermo-optical properties, leading to the emission of cover flakes; the degradation of the pressure-sensitive adhesive (PSA) used to glue Velcro’s to the spacecraft, and to glue multilayer insulation (MLI) to the spacecraft’s. The paint flakes generated are space debris. Hence, in a scenario of space missions where a spacecraft has lost the thermal shielding capability, the failure of PSA tape and the loss of Velcro properties may contribute to the release of the full MLI blanket, contributing to the generation of space debris that presents a growing threat to space missions in the main Earth orbits.


Sign in / Sign up

Export Citation Format

Share Document