A virtual test environment for validating spacecraft optical navigation

2013 ◽  
Vol 117 (1197) ◽  
pp. 1075-1101 ◽  
Author(s):  
S. M. Parkes ◽  
I. Martin ◽  
M. N. Dunstan ◽  
N. Rowell ◽  
O. Dubois-Matra ◽  
...  

Abstract The use of machine vision to guide robotic spacecraft is being considered for a wide range of missions, such as planetary approach and landing, asteroid and small body sampling operations and in-orbit rendezvous and docking. Numerical simulation plays an essential role in the development and testing of such systems, which in the context of vision-guidance means that realistic sequences of navigation images are required, together with knowledge of the ground-truth camera motion. Computer generated imagery (CGI) offers a variety of benefits over real images, such as availability, cost, flexibility and knowledge of the ground truth camera motion to high precision. However, standard CGI methods developed for terrestrial applications lack the realism, fidelity and performance required for engineering simulations. In this paper, we present the results of our ongoing work to develop a suitable CGI-based test environment for spacecraft vision guidance systems. We focus on the various issues involved with image simulation, including the selection of standard CGI techniques and the adaptations required for use in space applications. We also describe our approach to integration with high-fidelity end-to-end mission simulators, and summarise a variety of European Space Agency research and development projects that used our test environment.

Author(s):  
Nicolas Vayas Tobar ◽  
Pavolas N. Christidis ◽  
Nathaniel J. O'Connor ◽  
Michal Talmor ◽  
Jamal Seyed-Yagoobi

As modern day electronics develop, electronic devices become smaller, more powerful, and are expected to operate in more diverse configurations. However, the thermal control systems that help these devices maintain stable operation must advance as well to meet the demands. One such demand is the advent of flexible electronics for wearable technology, medical applications, and biology-inspired mechanisms. This paper presents the design and performance characteristics of a proof of concept for a flexible Electrohydrodynamic (EHD) pump, based on EHD conduction pumping technology in macro- and meso-scales. Unlike mechanical pumps, EHD conduction pumps have no moving parts, can be easily adjusted to the micro-scale, and have been shown to generate and control the flow of refrigerants for electronics cooling applications. However, these pumping devices have only been previously tested in rigid configurations unsuitable for use with flexible electronics. In this work, for the first time, the net flow generated by flexible EHD conduction pumps is measured on a flat-plane and in various bending configurations. In this behavioral characteristics study, the results show that the flexible EHD conduction pumps are capable of generating significant flow velocities in all size scales considered in this study, with and without bending. This study also proves the viability of screen printing as a manufacturing method for these pumps. EHD conduction pumping technology shows potential for use in a wide range of terrestrial and space applications, including thermal control of rigid as well as flexible electronics, flow generation and control in micro-scale heat exchangers and other thermal devices, as well as cooling of high power electrical systems, soft robotic actuators, and medical devices.


2012 ◽  
Vol 4 (5) ◽  
pp. 537-543
Author(s):  
Constantinos T. Angelis

New Global Navigation Satellite System (GNSS) systems under development, such as Galileo, are very promising for future global positioning-based applications. A vast research is undergoing a final stage of implementation in order to fulfill the primary purpose of European Space Agency for developing and then sustaining of 30 (27 + 3 spares) Galileo satellites in orbit. This article presents simulation results for a realistic deployment of multibeam antennas, with a new modified theoretical pattern, in GNSS Satellite Systems. The proposed multibeam antennas use 61-spot beams for maximum efficiency in terms of satellite coverage and accessing high quality of service. In order to prove the reliability and feasibility of this work, various simulations were conducted using the upcoming Galileo system as a platform taking into consideration real-world conditions. Gain analysis versus elevation, Bit Error Rate (BER) and access time simulation results show that the viability of the proposed multibeam antenna deployment is established.


2007 ◽  
Vol 3 (S248) ◽  
pp. 1-7
Author(s):  
C. Turon ◽  
F. Arenou

AbstractThe European Space Agency decision to include the Hipparcos satellite into its Science Programme is placed in the context of the years 1965-1980 and in the historical perspective of the progress of astrometry. The motivation and ideas which lead to the Hipparcos design are reviewed as well as its characteristics and performance. The amount and variety of applications represent an impressive evolution from the original science case and opened the way to much more ambitious further space missions, especially Gaia, based on the same basic principles. A giant step in technology led to a giant step in science. Next steps are presented at this Symposium.


2007 ◽  
Vol 16 (12a) ◽  
pp. 1957-1966
Author(s):  
LUIGI CACCIAPUOTI ◽  
OLIVIER MINSTER

The Human Spaceflight, Microgravity, and Exploration (HME) Directorate of the European Space Agency is strongly involved in fundamental physics research. One of the major activities in this field is represented by the ACES (Atomic Clock Ensemble in Space) mission. ACES will demonstrate the high performances of a new generation of atomic clocks in the microgravity environment of the International Space Station (ISS). Following ACES, a vigorous research program has been recently approved to develop a second generation of atomic quantum sensors for space applications: atomic clocks in the optical domain, aiming at fractional frequency stability and accuracy in the low 10-18 regime; inertial sensors based on matter-wave interferometry for the detection of tiny accelerations and rotations; a facility to study degenerate Bose gases in space. Tests of quantum physics on large distance scales represent another important issue addressed in the HME program. A quantum communication optical terminal has been proposed to perform a test of Bell's inequalities on pairs of entangled photons emitted by a source located on the ISS and detected by two ground stations. In this paper, present activities and future plans will be described and discussed.


2020 ◽  
Author(s):  
Erica Webb ◽  
Ben Wright ◽  
Marco Meloni ◽  
Jerome Bouffard ◽  
Tommaso Parrinello ◽  
...  

<p>Launched in 2010, the European Space Agency’s (ESA) polar-orbiting CryoSat satellite was specifically designed to measure changes in the thickness of polar sea ice and the elevation of the ice sheets and mountain glaciers. Beyond the primary mission objectives, CryoSat is also valuable source of data for the oceanographic community and CryoSat’s sophisticated SAR Interferometric Radar Altimeter (SIRAL) can measure high-resolution geophysical parameters from the open ocean to the coast.</p><p>CryoSat data is processed operationally using two independent processing chains: Ice and Ocean. To ensure that the CryoSat products meet the highest data quality and performance standards, the CryoSat Instrument Processing Facilities (IPFs) are periodically updated. Processing algorithms are improved based on feedback and recommendations from Quality Control (QC) activities, Calibration and Validation campaigns, the CryoSat Expert Support Laboratory (ESL), and the Scientific Community. </p><p>Since May 2019, the CryoSat ice products are generated with Baseline-D, which represented a major processor upgrade and implemented several improvements, including the optimisation of freeboard computation in SARIn mode, improvements to sea ice and land ice retracking and the migration from Earth Explorer Format (EEF) to Network Common Data Form (NetCDF). A reprocessing campaign is currently underway to reprocess the full mission dataset (July 2010 – May 2019) to Baseline-D.</p><p>The CryoSat ocean products are also generated in NetCDF, following a processor upgrade in November 2017 (Baseline-C). Improvements implemented in this new Baseline include the generation of ocean products for all data acquisition modes, therefore providing complete data coverage for ocean users. This upgrade also implemented innovative algorithms, refined existing ones and added new parameters and corrections to the products. Following the completion of a successful reprocessing campaign, Baseline-C ocean products are now available for the full mission dataset (July 2010 – present).</p><p>Since launch, the CryoSat ice and ocean products have been routinely monitored as part of QC activities by the ESA/ESRIN Sensor Performance, Products and Algorithms (SPPA) office with the support of the Quality Assurance for Earth Observation (QA4EO) service (formerly IDEAS+) led by Telespazio VEGA UK. The latest processor updates have brought significant improvements to the quality of CryoSat ice and ocean products, which in turn are expected to have a positive impact on the scientific exploitation of CryoSat measurements over all surface types.</p><p>This poster provides an overview of the CryoSat data quality status and the QC activities performed by the QA4EO consortium, including both operational and reprocessing QC. Also presented are the main evolutions and improvements that have implemented to the processors, and anticipated evolutions for the future.</p>


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 641 ◽  
Author(s):  
Joel Segarra ◽  
Maria Luisa Buchaillot ◽  
Jose Luis Araus ◽  
Shawn C. Kefauver

The use of satellites to monitor crops and support their management is gathering increasing attention. The improved temporal, spatial, and spectral resolution of the European Space Agency (ESA) launched Sentinel-2 A + B twin platform is paving the way to their popularization in precision agriculture. Besides the Sentinel-2 A + B constellation technical features the open-access nature of the information they generate, and the available support software are a significant improvement for agricultural monitoring. This paper was motivated by the challenges faced by researchers and agrarian institutions entering this field; it aims to frame remote sensing principles and Sentinel-2 applications in agriculture. Thus, we reviewed the features and uses of Sentinel-2 in precision agriculture, including abiotic and biotic stress detection, and agricultural management. We also compared the panoply of satellites currently in use for land remote sensing that are relevant for agriculture to the Sentinel-2 A + B constellation features. Contrasted with previous satellite image systems, the Sentinel-2 A + B twin platform has dramatically increased the capabilities for agricultural monitoring and crop management worldwide. Regarding crop stress monitoring, Sentinel-2 capacities for abiotic and biotic stresses detection represent a great step forward in many ways though not without its limitations; therefore, combinations of field data and different remote sensing techniques may still be needed. We conclude that Sentinel-2 has a wide range of useful applications in agriculture, yet still with room for further improvements. Current and future ways that Sentinel-2 can be utilized are also discussed.


2021 ◽  
Author(s):  
Erica Webb ◽  
Jenny Marsh ◽  
Laura Benzan Valette ◽  
Jerome Bouffard ◽  
Tommaso Parrinello ◽  
...  

<p>Launched in 2010, the European Space Agency’s (ESA) polar-orbiting CryoSat satellite was specifically designed to measure changes in the thickness of polar sea ice and the elevation of the ice sheets and mountain glaciers. Beyond the primary mission objectives, CryoSat is also valuable source of data for the oceanographic community and CryoSat’s sophisticated SAR Interferometric Radar Altimeter (SIRAL) can measure high-resolution geophysical parameters from the open ocean to the coast.</p><p>CryoSat data is processed operationally using two independent processing chains: Ice and Ocean. To ensure that the CryoSat products meet the highest data quality and performance standards, the CryoSat Instrument Processing Facilities (IPFs) are periodically updated. Processing algorithms are improved based on feedback and recommendations from Quality Control (QC) activities, Calibration and Validation campaigns, the CryoSat Expert Support Laboratory (ESL), and the Scientific Community.</p><p>Since May 2019, the CryoSat ice products have been generated with Baseline-D, which represented a major processor upgrade and implemented several improvements, including the optimisation of freeboard computation in SARIn mode, improvements to sea ice and land ice retracking and the migration from Earth Explorer Format (EEF) to Network Common Data Form (NetCDF). The Baseline-D reprocessing campaign completed in May 2020, and the full mission Baseline-D dataset is now available to users (July 2010 – present). The next major processor upgrade, Baseline-E, is already under development and following testing and refinement is anticipated to be operational in Q3 2021.</p><p>The CryoSat ocean products are also generated in NetCDF, following a processor upgrade in November 2017 (Baseline-C). Improvements implemented in this baseline include the generation of ocean products for all data acquisition modes, therefore providing complete data coverage for ocean users. This upgrade also implemented innovative algorithms, refined existing ones and added new parameters and corrections to the products. Following the completion of a successful reprocessing campaign, Baseline-C ocean products are now available for the full mission dataset (July 2010 – present). Preparations are underway for the next major processor upgrade, Baseline-D.</p><p>Since launch, the CryoSat ice and ocean products have been routinely monitored as part of QC activities by the ESA/ESRIN Sensor Performance, Products and Algorithms (SPPA) office with the support of the Quality Assurance for Earth Observation (QA4EO) service (formerly IDEAS+) led by Telespazio UK. The latest processor updates have brought significant improvements to the quality of CryoSat ice and ocean products, which in turn are expected to have a positive impact on the scientific exploitation of CryoSat measurements over all surface types.</p><p>This poster provides an overview of the CryoSat data quality status and the QC activities performed by the IDEAS-QA4EO consortium, including both operational and reprocessing QC. Also presented are the main evolutions and improvements that have implemented to the processors, and anticipated evolutions for the future.</p>


Author(s):  
Janis Grasis

Latvia became an associate member of the European Space Agency (ESA) in 2020. The ESA is an intergovernmental organisation dedicated to the exploration of space. According to the Article II of the Convention of establishment of a European Space Agency, the purpose of the ESA is to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view to their being used for scientific purposes and for operational space applications systems. “The Space Strategy for Latvia 2021-2027” (Strategy) recently was collectively developed by the Ministry of Education and Science and the Ministry of Economics of the Republic of Latvia. It establishes a focused framework for the cooperation of Latvia with the ESA and contributes to the achievement of the objectives, priorities and actions defined in the Latvian National Development Plan 2021-2027, the National Industrial Policy Guidelines 2021-2027 and the Science, Technological Development and Innovation Guidelines 2021-2027. As it is indicated in the Strategy, Latvian higher education institutions ensure the development of an adequate base of   expertise and skills in graduates to be able to serve the needs of the space sector in Latvia. It is proposed in Strategy that Universities in collaboration with local industrial partners develop higher-education courses and lifelong learning programmes to respond to the national space industry need. Novelty of the research: this is one of the first academic research concerning the possible studies of space law in the Latvian higher education institutions. Just now law studies are provided by 8 higher education institutions; but no one offers single study course on space law. The research aim is to analyse necessity to teach space law in the universities of the Republic of Latvia, taking into account the fact that Latvia now is an associate member of the ESA. The author has used descriptive, analytical and deductive-inductive research methods in the article. After review and analysis of the legal acts, policy planning documents and different reports, the author has made conclusions and recommendations. Preliminary it seems that space law must be teached as separated study course (or at least this topic must be included in the study course “International air law” or similar study course); publication of teaching book “Space law” also is desirable in latvian language. 


2015 ◽  
Vol 12 (11) ◽  
pp. 11549-11589 ◽  
Author(s):  
M. Enenkel ◽  
C. Reimer ◽  
W. Dorigo ◽  
W. Wagner ◽  
I. Pfeil ◽  
...  

Abstract. The soil moisture dataset that is generated via the Climate Change Initiative (CCI) of the European Space Agency (ESA) (ESA CCI SM) is a popular research product. It is composed of observations from nine different satellites and aims to exploit the individual strengths of active (radar) and passive (radiometer) sensors, thereby providing surface soil moisture estimates at a spatial resolution of 0.25°. However, the annual updating cycle limits the use of the ESA CCI SM dataset for operational applications. Therefore, this study proposes an adaptation of the ESA CCI processing chain for daily global updates via satellite-derived near real-time (NRT) soil moisture observations. In order to extend the ESA CCI SM dataset from 1978 to present we use NRT observations from the Advanced SCATterometer on-board the MetOp satellites and the Advanced Microwave Scanning Radiometer 2 on-board GCOM-W. Since these NRT observations do not incorporate the latest algorithmic updates, parameter databases, and intercalibration efforts, by nature they offer a lower quality than reprocessed offline datasets. Our findings indicate that, despite issues in arid regions, the new "CCI NRT" dataset shows a good correlation with ESA CCI SM. The average global correlation coefficient between CCI NRT and ESA CCI SM (Pearson's R) is 0.8. An initial validation with 40 in-situ observations in France, Kenya, Senegal and Kenya yields an average R of 0.58 and 0.49 for ESA CCI SM and CCI NRT respectively. In summary, the CCI NRT dataset is getting ready for operational use, supporting applications such as drought and flood monitoring, weather forecasting or agricultural applications.


2016 ◽  
Vol 20 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Kristin Vreys ◽  
Marian-Daniel Iordache ◽  
Bart Bomans ◽  
Koen Meuleman

Abstract APEX (Airborne Prism EXperiment) is a high spectral and spatial resolution hyperspectral sensor developed by a Swiss-Belgian consortium on behalf of the European Space Agency. Since the acceptance of the instrument in 2010, it has been operated jointly by the Flemish Institute for Technological Research (VITO, Mol, Belgium) and the Remote Sensing Laboratories (RSL, Zurich, Switzerland). During this period, several flight campaigns have been performed across Europe, gathering over 4 Terabytes of raw data. Following radiometric, geometric and atmospheric processing, this data has been provided to a multitude of Belgian and European researchers, institutes and agencies, including the European Space Agency (ESA), the European Facility for Airborne Research (EUFAR) and the Belgian Science Policy Office (BelSPO). The applications of APEX data span a wide range of research topics, e.g. landcover mapping (mountainous, coastal, countryside and urban regions), the assessment of important structural and (bio)physical characteristics of vegetative and non-vegetative species, the tracing of atmospheric gases, and water content analysis (chlorophyll, suspended matter). Recurrent instrument calibration, accurate flight planning and preparation, and experienced pilots and instrument operators are crucial to successful data acquisition campaigns. In this paper, we highlight in detail these practical aspects of a typical APEX data acquisition campaign.


Sign in / Sign up

Export Citation Format

Share Document