scholarly journals High-exitation nebulae around Magellanic Wolf-Rayet stars

2008 ◽  
Vol 4 (S256) ◽  
pp. 437-442 ◽  
Author(s):  
Manfred W. Pakull

AbstractThe SMC harbours a class of hot nitrogen-sequence Wolf-Rayet stars (WNE) that display only relatively weak broad Heiiλ4686 emission indicative of their low mass-loss rates and which are therefore hard to detect. However, such stars are possible emitters of strong He+Lyman continua which in turn could ionize observable Heiiiregions, i.e. highly excited Hiiregions emitting nebular Heiiλ4686 emission. We here report the discovery of a second Heiiiregion in the SMC within OB association NGC 249 within which the weak-lined WN star SMC WR10 is embedded. SMC WR10 is of special importance since it is a single star showing the presence of atmospheric hydrogen. While analysing the spectrum in the framework of two popular, independent WR atmosphere models we found strongly discrepant predictions (by 1 dex) of the He+continuum for the same input parameters. A second interesting aspect of the work reported here concerns the beautiful MCELS images which clearly reveal a class of strongly Oiiiλ5007 emitting (blue-coded) nebulae. Not unexpectedly, most of the “blue” nebulae are known Wolf-Rayet bubbles, but new bubbles around a few WRs are also detected. Moreover, we report the existence of blue nebulae without associated known WRs and discuss the possibility that they reveal weak-wind WR stars with very faint stellar Heiiλ4686 emission. Alternatively, such nebulae might hint at the hitherto missing population of relatively low-mass, hot He stars predicted by massive binary evolution calculations. Such a binary system is probably responsible for the ionization of the unique Heiiλ4686-emitting nebula N 44C.

1999 ◽  
Vol 191 ◽  
pp. 561-566
Author(s):  
C. Loup ◽  
E. Josselin ◽  
M.-R. Cioni ◽  
H.J. Habing ◽  
J.A.D.L. Blommaert ◽  
...  

We surveyed 0.5 square degrees in the Bar of the LMC with ISOCAM at 4.5 and 12 μm, and with DENIS in the I, J, and Ks bands. Our goal was to build a complete sample of Thermally-Pulsing AGB stars. Here we present the first analysis of 0.14 square degrees. In total we find about 300 TP-AGB stars. Among these TP-AGB stars, 9% are obscured AGB stars (high mass-loss rates); 9 of them were detected by IRAS, and only 1 was previously identified. Their luminosities range from 2 500 to 14 000 L⊙, with a distribution very similar to the one of optical TP-AGB stars (i.e. those with low mass-loss rates). Such a luminosity distribution, as well as the percentage of obscured stars among TP-AGB stars, is in very good agreement with the evolutionary models of Vassiliadis & Wood (1993) if most of the TP-AGB stars that we find have initial masses smaller than 1.5 to 2 M⊙.


2018 ◽  
Vol 609 ◽  
pp. A94 ◽  
Author(s):  
R. Hainich ◽  
L. M. Oskinova ◽  
T. Shenar ◽  
P. Marchant ◽  
J. J. Eldridge ◽  
...  

Context. The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ≈ 36 M⊙ and ≈ 29 M⊙. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Aims. Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Methods. Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (Potsdam Wolf-Rayet), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. Results. The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. Based on our atmosphere models, we provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Conclusions. While the predicted parameter space for massive BH binary progenitors is partly realized in nature, none of the known massive binaries match our synthetic spectra of massive BH binary progenitors exactly. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.


1981 ◽  
Vol 59 ◽  
pp. 283-287
Author(s):  
A. Maeder

We have calculated evolutionary models of massive stars in the range 15-120 Mʘ from the zero-age sequence up to the end of the carbon burning stage (Maeder, 1981). Three sets of models with different mass loss rates Ṁ have been computed; the adopted parametrisation of Ṁ is fitted on the observations and thus the expression for Ṁ differs according to the location of the stars in the HRD.In this short note we concentrate on the location of the He-burning stars in the HRD. The helium burning phase, which lasts 8 to 10% of the MS phase, is spent mainly as red supergiants (RSG) and as WR stars (note that for low mass loss, the time spent as A-G supergiants becomes longer).


Author(s):  
Binyamin V Naiman ◽  
Efrat Sabach ◽  
Avishai Gilkis ◽  
Noam Soker

Abstract We simulate the evolution of binary systems with a massive primary star of 15M⊙ where we introduce an enhanced mass loss due to jets that the secondary star might launch, and find that in many cases the enhanced mass loss brings the binary system to experience the grazing envelope evolution (GEE) and form a progenitor of Type IIb supernova (SN IIb). The jets, the Roche lobe overflow (RLOF), and a final stellar wind remove most of the hydrogen-rich envelope, leaving a blue-compact SN IIb progenitor. In many cases without this jet-driven mass loss the system enters a common envelope evolution (CEE) and does not form a SN IIb progenitor. We use the stellar evolutionary code MESA binary and mimic the jet-driven mass loss with a simple prescription and some free parameters. Our results show that the jet-driven mass loss, that some systems have during the GEE, increases the parameter space for stellar binary systems to form SN IIb progenitors. We estimate that the binary evolution channel with GEE contributes about a quarter of all SNe IIb, about equal to the contribution of each of the other three channels, binary evolution without a GEE, fatal CEE (where the secondary star merges with the core of the giant primary star), and the single star channel.


2020 ◽  
Vol 496 (2) ◽  
pp. 1325-1342 ◽  
Author(s):  
Ioana Boian ◽  
Jose H Groh

ABSTRACT We compute an extensive set of early-time spectra of supernovae interacting with circumstellar material using the radiative transfer code cmfgen. Our models are applicable to events observed from 1 to a few days after explosion. Using these models, we constrain the progenitor and explosion properties of a sample of 17 observed interacting supernovae at early times. Because massive stars have strong mass-loss, these spectra provide valuable information about supernova progenitors, such as mass-loss rates, wind velocities, and surface abundances. We show that these events span a wide range of explosion and progenitor properties, exhibiting supernova luminosities in the 108 to 1012 L⊙ range, temperatures from 10 000 to 60 000 K, progenitor mass-loss rates from a few 10−4 up to 1 M⊙ yr−1, wind velocities from 100 to 800 km s−1, and surface abundances from solar-like to H-depleted. Our results suggest that many progenitors of supernovae interacting with circumstellar material have significantly increased mass-loss before explosion compared to what massive stars show during the rest of their lifetimes. We also infer a lack of correlation between surface abundances and mass-loss rates. This may point to the pre-explosion mass-loss mechanism being independent of stellar mass. We find that the majority of these events have CNO-processed surface abundances. In the single star scenario this points to a preference towards high-mass RSGs as progenitors of interacting SNe, while binary evolution could impact this conclusion. Our models are publicly available and readily applicable to analyse results from ongoing and future large-scale surveys such as the Zwicky Transient Factory.


2019 ◽  
Vol 488 (2) ◽  
pp. 2892-2903 ◽  
Author(s):  
Ingrid Pelisoli ◽  
Joris Vos

ABSTRACT Extremely low-mass white dwarf stars (ELMs) are M < 0.3 M⊙ helium-core white dwarfs born either as a result of a common-envelope phase or after a stable Roche lobe overflow episode in a multiple system. The Universe is not old enough for ELMs to have formed through single-star evolution channels. As remnants of binary evolution, ELMs can shed light onto the poorly understood phase of common-envelope evolution and provide constraints to the physics of mass accretion. Most known ELMs will merge in less than a Hubble time, providing an important contribution to the signal to be detected by upcoming space-based gravitational wave detectors. There are currently less than 150 known ELMs; most were selected by colour, focusing on hot objects, in a magnitude-limited survey of the Northern hemisphere only. Recent theoretical models have predicted a much larger space density for ELMs than estimated observationally based on this limited sample. In order to perform meaningful comparisons with theoretical models and test their predictions, a larger well-defined sample is required. In this work, we present a catalogue of ELM candidates selected from the second data release of Gaia (DR2). We have used predictions from theoretical models and analysed the properties of the known sample to map the space spanned by ELMs in the Gaia Hertzsprung–Russell diagram. Defining a set of colour cuts and quality flags, we have obtained a final sample of 5762 ELM candidates down to Teff ≈ 5000 K.


2015 ◽  
Vol 5 (1) ◽  
pp. 24-28
Author(s):  
P. Karczmarek

A Binary Evolution Pulsator (BEP) is a low-mass (0.26 𝔐☉) member of a binary system, which pulsates as a result of a former mass transfer to its companion. The BEP mimics RR Lyrae-type pulsations, but has completely different internal structure and evolution history. Although there is only one known BEP (OGLE-BLG-RRLYR-02792), it has been estimated that approximately 0.2% of objects classified as RR Lyrae stars can be undetected Binary Evolution Pulsators. In the present work, this contamination value is re-evaluated using the population synthesis method. The output falls inside a range of values dependent on tuning the parameters in the StarTrack code, and varies from 0.06% to 0.43%.


2019 ◽  
Vol 628 ◽  
pp. A36 ◽  
Author(s):  
E. S. G. de Almeida ◽  
W. L. F. Marcolino ◽  
J.-C. Bouret ◽  
C. B. Pereira

Aims. Analyses of Galactic late O dwarfs (O8-O9.5V stars) raised the “weak wind problem”: spectroscopic mass-loss rates (Ṁ) are up to two orders of magnitude lower than the theoretical values. We investigated the stellar and wind properties of Galactic late O giants (O8-O9.5III stars). These stars have luminosities log (L⋆ ∕ L⊙) ~ 5.2, which is the critical value (onset of weak winds) proposed in the literature. Methods. We performed a spectroscopic analysis of nine O8-O9.5III stars in the ultraviolet (UV) and optical regions using the model atmosphere code CMFGEN. Results. Stellar luminosities were adopted using calibrations from the literature. Overall, our model spectral energy distributions agree well with the observed ones considering parallaxes from the latest Gaia data release (DR2). The effective temperature derived from the UV region agrees well with the ones from the optical. As expected, the analysis of the Hertzsprung–Russell (HR) diagram shows that our sample is more evolved than late O dwarfs. From the UV region, we found Ṁ ~ 10−8 − 10−9M⊙ yr−1 overall. This is lower by ~0.9 − 2.3 dex than predicted values based on the (global) conservation of energy in the wind. The mass-loss rates predicted from first principles, based on the moving reversing layer theory, agree better with our findings, but it fails to match the spectroscopic Ṁ for the most luminous OB stars. The region of log (L⋆ ∕ L⊙) ~ 5.2 is critical for both sets of predictions in comparison with the spectroscopic mass-loss rates. CMFGEN models with the predicted Ṁ (the former one) fail to reproduce the UV wind lines for all the stars of our sample. We reproduce the observed Hα profiles of four objects with our Ṁ derived from the UV. Hence, low Ṁ values (weak winds) are favored to fit the observations (UV + optical), but discrepancies between the UV and Hα diagnostics remain for some objects. Conclusions. Our results indicate weak winds beyond the O8-9.5V class, since the region of log (L⋆ ∕ L⊙) ~ 5.2 is indeed critical to the weak wind phenomenon. Since O8-O9.5III stars are more evolved than O8-9.5V, evolutionary effects do not seem to play a role in the onset of the weak wind phenomenon. These findings support that the Ṁ (for low luminosity O stars) in use in the majority of modern stellar evolution codes must be severely overestimated up to the end of the H-burning phase. Further investigations must evaluate the consequences of weak winds in terms of physical parameters for massive stars (e.g., angular momentum and CNO surface abundances).


1989 ◽  
Vol 131 ◽  
pp. 454-454
Author(s):  
Amos Harpaz

The lowest mass observed for a nucleus of a planetary nebula (NPN) is about 0.55 M⊙ (Weidemann and Koester, 1983, Schonberner, 1983). Hence, Lower mass WD's should have been produced without going through the phase of a visible PN ejection. Recently, Harpaz et al. (1987), have shown that very low mass WD's (up to 0.45 M⊙) can be formed by a single star evolution from red giant branch (RGB) stars, due to mass loss along the RGB. It turns out that WD's in mass range of 0.46–0.55 M⊙ formed by a single star evolution should be formed from the AGB, without an observable PN.


1970 ◽  
Vol 6 ◽  
pp. 65-94
Author(s):  
Robert H. Koch

My present understanding of this problem is formulated in a differential fashion: what is the rate of loss of mass from at least one close binary component over and above what it would have to lose were it a single star? This question implies another: is the mass loss that is expected to occur at certain stages of single star evolution inhibited in any way by membership in a binary system? I do not believe we are yet at the stage of being able to answer these questions, and I would like to use this opportunity to scrutinize as critically as possible the observational data and our interpretation of the results that are in hand. A summary of mass loss trends in single stars may be found in the paper by Deutsch (1969) at the 1968 Trieste Conference or alternately in the review paper by Weymann (1963).


Sign in / Sign up

Export Citation Format

Share Document