scholarly journals A relativistic motion integrator: numerical accuracy and illustration with BepiColombo and Mars-NEXT

2009 ◽  
Vol 5 (S261) ◽  
pp. 144-146 ◽  
Author(s):  
A. Hees ◽  
S. Pireaux

AbstractToday, the motion of spacecraft is still described by the classical Newtonian equations of motion plus some relativistic corrections. This approach might become cumbersome due to the increasing precision required. We use the Relativistic Motion Integrator (RMI) approach to numerically integrate the native relativistic equations of motion for a spacecraft. The principle of RMI is presented. We compare the results obtained with the RMI method with those from the usual Newton plus correction approach for the orbit of the BepiColombo (around Mercury) and Mars-NEXT (around Mars) orbiters. Finally, we present a numerical study of RMI and we show that the RMI approach is relevant to study the orbit of spacecraft.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ren Yongsheng ◽  
Zhang Xingqi ◽  
Liu Yanghang ◽  
Chen Xiulong

The dynamical analysis of a rotating thin-walled composite shaft with internal damping is carried out analytically. The equations of motion are derived using the thin-walled composite beam theory and the principle of virtual work. The internal damping of shafts is introduced by adopting the multiscale damping analysis method. Galerkin’s method is used to discretize and solve the governing equations. Numerical study shows the effect of design parameters on the natural frequencies, critical rotating speeds, and instability thresholds of shafts.


2006 ◽  
Vol 3 (3) ◽  
pp. 470-480
Author(s):  
Baghdad Science Journal

This paper deals with numerical study of the flow of stable and fluid Allamstqr Aniotina in an area surrounded by a right-angled triangle has touched particularly valuable secondary flow cross section resulting from the pressure gradient In the first case was analyzed stable flow where he found that the equations of motion that describe the movement of the fluid


2008 ◽  
Vol 74 (1) ◽  
pp. 111-118
Author(s):  
FEN-CE CHEN

AbstractThe acceleration of ions by multiple laser pulses and their spontaneously generated electric and magnetic fields is investigated by using an analytical model for the latter. The relativistic equations of motion of test charged particles are solved numerically. It is found that the self-generated axial electric field plays an important role in the acceleration, and the energy of heavy test ions can reach several gigaelectronvolts.


1992 ◽  
Vol 152 ◽  
pp. 145-152 ◽  
Author(s):  
R. Dvorak

In this article we present a numerical study of the motion of asteroids in the 2:1 and 3:1 resonance with Jupiter. We integrated the equations of motion of the elliptic restricted 3-body problem for a great number of initial conditions within this 2 resonances for a time interval of 104 periods and for special cases even longer (which corresponds in the the Sun-Jupiter system to time intervals up to 106 years). We present our results in the form of 3-dimensional diagrams (initial a versus initial e, and in the z-axes the highest value of the eccentricity during the whole integration time). In the 3:1 resonance an eccentricity higher than 0.3 can lead to a close approach to Mars and hence to an escape from the resonance. Asteroids in the 2:1 resonance with Jupiter with eccentricities higher than 0.5 suffer from possible close approaches to Jupiter itself and then again this leads in general to an escape from the resonance. In both resonances we found possible regions of escape (chaotic regions), but only for initial eccentricities e > 0.15. The comparison with recent results show quite a good agreement for the structure of the 3:1 resonance. For motions in the 2:1 resonance our numeric results are in contradiction to others: high eccentric orbits are also found which may lead to escapes and consequently to a depletion of this resonant regions.


2015 ◽  
Vol 33 (2) ◽  
pp. 307-313 ◽  
Author(s):  
M. A. Pocsai ◽  
S. Varró ◽  
I. F. Barna

AbstractAn effective theory of laser–plasma-based particle acceleration is presented. Here we treated the plasma as a continuous medium with an index of refraction nm in which a single electron propagates. Because of the simplicity of this model, we did not perform particle-in-cell (PIC) simulations in order to study the properties of the electron acceleration. We studied the properties of the electron motion due to the Lorentz force and the relativistic equations of motion were numerically solved and analyzed. We compared our results with PIC simulations and experimental data.


Author(s):  
Prabhat Kumar ◽  
Rajiv Tiwari

Abstract This paper focusses on analysing the vibration behaviour of a rigid rotor levitated by active magnetic bearings (AMB) under the influence of unbalance and misalignment parameters. Unbalance in rotor and misalignment between rotor and both supported AMBs are key fault parameters in the rotor system. To demonstrate this dynamic analysis, an unbalanced rigid rotor with a disc at the middle levitated by two misaligned active magnetic bearings has been mathematically modelled. One of the novel concepts is also described as how the force due to active magnetic bearings on the rigid rotor is modified when the rotor is parallel misaligned with AMBs. With inclusion of inertia force, unbalance force and force due to misaligned AMBs, the equations of motion of the rigid rotor system are derived and converted into dimensionless form in terms of various non-dimensional system and fault parameters. Numerical simulations have been performed to yield the dimensionless rotor displacement and controlling current responses at AMBs. The prime intention of the present paper is to study the effect on the displacement response of the rigid rotor system and the current consumption of AMBs for different ranges of disc eccentricities and rotor-AMB misalignments.


2019 ◽  
Vol 34 (05) ◽  
pp. 1950028
Author(s):  
Wolfgang Lucha ◽  
Franz F. Schöberl

We compile some easily deducible information on the discrete eigenvalue spectra of spinless Salpeter equations encompassing, besides a relativistic kinetic term, interactions which are expressible as superpositions of an attractive Coulomb potential and an either attractive or repulsive Yukawa potential and, hence, generalizations of the Hellmann potential employed in several areas of science. These insights should provide useful guidelines to all attempts of finding appropriate descriptions of bound states by (semi-)relativistic equations of motion.


2013 ◽  
Vol 430 ◽  
pp. 53-59 ◽  
Author(s):  
Nicolae Doru Stanescu ◽  
Dinel Popa

Our paper realizes a study of the vibrations of an engine excited by a harmonic force and sustained by four identical neo-Hookean springs of negligible masses. The considered model is one with three degrees of freedom (one translation and two rotations) and we obtain for it the equations of motion. Using these equations, we determine for the unexcited system the equilibrium positions and their stability. We also study the small oscillations about the stable equilibrium positions and we find the fundamental eigenpulsations of the system. For the case of the excited system we perform a numerical study considering the situation when the pulsation of the excitation is far away from the eigenpulsations and the situation when the pulsation of the excitation is closed to one eigenpulsation, highlighting the beat phenomenon.


Sign in / Sign up

Export Citation Format

Share Document