scholarly journals The Stellar Population of the Galactic Bulge

2009 ◽  
Vol 5 (S265) ◽  
pp. 271-278 ◽  
Author(s):  
M. Zoccali

AbstractThe Galactic bulge is the central spheroid of our Galaxy, containing about one quarter of the total stellar mass of the Milky Way (Mbulge = 1.8 × 1010M⊙; Sofue, Honma & Omodaka 2009). Being older than the disk, it is the first massive component of the Galaxy to have collapsed into stars. Understanding its structure, and the properties of its stellar population, is therefore of great relevance for galaxy formation models. I will review our current knowledge of the bulge properties, with special emphasis on chemical abundances, recently measured for several hundred stars.

2009 ◽  
Vol 5 (S265) ◽  
pp. 304-312
Author(s):  
Carlos Allende Prieto

AbstractWe discuss recent observations of stars located close to the symmetry plane of the Milky Way, and examine them in the context of theories of Galaxy formation and evolution. The kinematics, ages, and compositions of thin disk stars in the solar neighborhood display complex patterns, and interesting correlations. The Galactic disk does not seem to pose any unsurmountable obstacles to hierarchical galaxy formation theories, but a model of the Milky Way able to reproduce the complexity found in the data will likely require a meticulous study of a significant fraction of the stars in the Galaxy. Making such an observational effort seems necessary in order to make a physics laboratory out of our own galaxy, and ultimately ensure that the most relevant processes are properly understood.


2020 ◽  
Vol 636 ◽  
pp. A115 ◽  
Author(s):  
P. Di Matteo ◽  
M. Spite ◽  
M. Haywood ◽  
P. Bonifacio ◽  
A. Gómez ◽  
...  

We analysed a set of very metal-poor stars, for which accurate chemical abundances have been obtained as part of the ESO Large Program “First stars” in the light of the Gaia DR2 data. The kinematics and orbital properties of the stars in the sample show they probably belong to the thick disc, partially heated to halo kinematics, and to the accreted Gaia Sausage-Enceladus satellite. The continuity of these properties with stars at both higher ([Fe/H] >  −2) and lower metallicities ([Fe/H] <  −4.) suggests that the Galaxy at [Fe/H] ≲ −0.5 and down to at least [Fe/H] ∼ −6 is dominated by these two populations. In particular, we show that the disc extends continuously from [Fe/H] ≤ −4 (where stars with disc-like kinematics have recently been discovered) up to [Fe/H] ≥ −2, the metallicity regime of the Galactic thick disc. An “ultra metal-poor thick disc” does indeed exist, constituting the extremely metal-poor tail of the canonical Galactic thick disc, and extending the latter from [Fe/H] ∼ −0.5 up to the most metal-poor stars discovered in the Galaxy to date. These results suggest that the disc may be the main, and possibly the only, stellar population that has formed in the Galaxy at these metallicities. This would mean that the dissipative collapse that led to the formation of the old Galactic disc must have been extremely fast. We also discuss these results in the light of recent simulation efforts made to reproduce the first stages of Milky Way-type galaxies.


2017 ◽  
Vol 13 (S334) ◽  
pp. 219-222
Author(s):  
Sebastián E. Nuza ◽  
Cristina Chiappini ◽  
Cecilia Scannapieco ◽  
Ivan Minchev ◽  
Marie Martig ◽  
...  

AbstractIn chemodynamical evolution models it is usually assumed that the Milky Way galaxy forms from the inside-out implying that gas inflows onto the disk decrease with galactocentric distance. Similarly, to reproduce differences between chemical abundances of the thick disk and bulge with respect to those of the thin disk, higher accretion fluxes at early times are postulated. By using a suite of Milky Way-like galaxies extracted from cosmological simulations, we investigate the accretion of gas on the simulated stellar disks during their whole evolution. In general, we find that the picture outlined above holds, although the detailed behavior depends on the assembly history of the Galaxy and the complexities inherent to the physics of galaxy formation.


Author(s):  
Joseph A O’Leary ◽  
Benjamin P Moster ◽  
Thorsten Naab ◽  
Rachel S Somerville

Abstract We explore the galaxy-galaxy merger rate with the empirical model for galaxy formation, emerge. On average, we find that between 2 per cent and 20 per cent of massive galaxies (log10(m*/M⊙) ≥ 10.3) will experience a major merger per Gyr. Our model predicts galaxy merger rates that do not scale as a power-law with redshift when selected by descendant stellar mass, and exhibit a clear stellar mass and mass-ratio dependence. Specifically, major mergers are more frequent at high masses and at low redshift. We show mergers are significant for the stellar mass growth of galaxies log10(m*/M⊙) ≳ 11.0. For the most massive galaxies major mergers dominate the accreted mass fraction, contributing as much as 90 per cent of the total accreted stellar mass. We reinforce that these phenomena are a direct result of the stellar-to-halo mass relation, which results in massive galaxies having a higher likelihood of experiencing major mergers than low mass galaxies. Our model produces a galaxy pair fraction consistent with recent observations, exhibiting a form best described by a power-law exponential function. Translating these pair fractions into merger rates results in an inaccurate prediction compared to the model intrinsic values when using published observation timescales. We find the pair fraction can be well mapped to the intrinsic merger rate by adopting an observation timescale that decreases linearly with redshift as Tobs = −0.36(1 + z) + 2.39 [Gyr], assuming all observed pairs merge by z = 0.


2020 ◽  
Vol 501 (2) ◽  
pp. 1591-1602
Author(s):  
T Parsotan ◽  
R K Cochrane ◽  
C C Hayward ◽  
D Anglés-Alcázar ◽  
R Feldmann ◽  
...  

ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$ at z = 2, hosted by haloes of mass $M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $1\, \rm {kpc}$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2.


2012 ◽  
Vol 10 (H16) ◽  
pp. 372-372
Author(s):  
Rok Roškar

AbstractIn recent years, effects such as the radial migration of stars in disks have been recognized as important drivers of the properties of stellar populations. Radial migration arises due to perturbative effects of disk structures such as bars and spiral arms, and can deposit stars formed in disks to regions far from their birthplaces. Migrant stars can significantly affect the demographics of their new locales, especially in low-density regions such as in the outer disks. However, in the cosmological environment, other effects such as mergers and filamentary gas accretion also influence the disk formation process. Understanding the relative importance of these processes on the detailed evolution of stellar population signatures is crucial for reconstructing the history of the Milky Way and other nearby galaxies. In the Milky Way disk in particular, the formation of the thickened component has recently attracted much attention due to its potential to serve as a diagnostic of the galaxy's early history. Some recent work suggests, however, that the vertical structure of Milky Way stellar populations is consistent with models that build up the thickened component through migration. I discuss these developments in the context of cosmological galaxy formation.


2009 ◽  
Vol 5 (S265) ◽  
pp. 354-355
Author(s):  
Oscar Cavichia ◽  
Roberto D. D. Costa ◽  
Walter J. Maciel

AbstractNew abundances of planetary nebulae located towards the bulge of the Galaxy are derived based on observations made at LNA (Brazil). We present accurate abundances of the elements He, N, S, O, Ar, and Ne for 56 PNe located towards the galactic bulge. The data shows a good agreement with other results in the literature, in the sense that the distribution of the abundances is similar to those works. From the statistical analysis performed, we can suggest a bulge-disk interface at 2.2 kpc for the intermediate mass population, marking therefore the outer border of the bulge and inner border of the disk.


1985 ◽  
Vol 106 ◽  
pp. 603-610
Author(s):  
S. Michael Fall

In broad outline, the traditional picture for the formation of the Milky Way can be summarized as follows. The proto-galaxy consisted of a slowly rotating cloud of metal-free gas that cooled by bremsstrahlung and recombination radiation. As the internal pressure of the gas decreased, it collapsed in stages with smaller dimensions, faster rotation velocities and flatter shapes until it reached centrifugal support in a fundamental plane. At the same time, the gas was progressively depleted by the formation of stars and enriched with heavy elements by the ejecta from previous generations. The result is a general correlation between the kinematic properties, chemical compositions and relative ages of the stellar populations within the Galaxy. This picture was formulated at the Vatican symposium by Oort (1958) and others and was elaborated by Eggen, Lynden-Bell & Sandage (1962), Sandage, Freeman & Stokes (1970), Gott & Thuan (1976), Larson (1976) and others. Much of the recent work on galaxy formation has been an attempt to extend these ideas to a more comprehensive picture that includes large quantities of dark matter. The purpose of this article is to review several topics concerning the collapse phase in the evolution of the Milky Way.


2003 ◽  
Vol 209 ◽  
pp. 431-438
Author(s):  
Arturo Manchado

The morphology of a complete sample of 255 northern planetary nebulae (PNe) was studied and correlated with the nebular parameters. PNe were classified according to the following scheme: round (R, 25%), elliptical (E, 58% of the sample), and bipolar (B, 17%). Bipolars include the quadrupolar subsample. A subclass of pointsymmetric and multiple shell PNe was also found. Nine per cent of ellipticals and 46% of bipolars were found to be pointsymmetric. Thirty-five per cent of the round and 22% of the elliptical PNe were found to be multiple shell PNe (MSPNe). Galactic latitude was found to be different for each morphological class (|b| = 8°, 5° and 2° for types R, E, and B, respectively). Galactic height was also found to vary: 〈z〉 = 647, 276, and 100 pc for categories R, E, and B, respectively. Segregation according to the chemical abundances was also found, with helium abundances of 0.10, 0.12, and 0.14 and N/O of 0.21, 0.31, and 1.33 for types R, E, and B, respectively. Both galactic distribution and chemical abundances point to a different stellar population for each morphological class, the round and bipolar types being the result of low and high stellar mass progenitor evolution, respectively.


2008 ◽  
Vol 4 (S254) ◽  
pp. 145-152
Author(s):  
James Binney

AbstractBulges come in two flavours – classical and pseudo. The principal characteristics of each flavour are summarised and their impact on discs is considered. Classical bulges probably inhibit the formation of stellar discs. Pseudobulges exchange angular momentum with stars and gas in their companion discs, and also with its embedding dark halo. Since the structure of a pseudobulge depends critically on its angular momentum, these exchanges are expected to modify the bulge. The consequences of this modification are not yet satisfactorily understood. The Galaxy has a pseudobulge. I review the manifestations of its interaction with the disc. More work is needed on the dynamics of gas near the bulge's corotation radius, and on tracing the stellar population in the inner few hundred parsecs of the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document