scholarly journals Planetary nebulae and the chemical evolution of the galactic bulge: New abundances of older objects

2011 ◽  
Vol 7 (S283) ◽  
pp. 326-327 ◽  
Author(s):  
Oscar Cavichia ◽  
Roberto D. D. Costa ◽  
Mercedes Mollá ◽  
Walter J. Maciel

AbstractIn view of their nature, planetary nebulae have very short lifetimes, and the chemical abundances derived so far have a natural bias favoring younger objects. In this work, we report physical parameters and abundances for a sample of old PNe located in the galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman Spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebula luminosity function (PNLF). The results show that the abundances of our sample are lower than those from our previous work. Additionally, the average abundances of the galactic bulge do not follow the observed trend of the radial abundance gradient in the disk. These results are in agreement with a chemical evolution model for the Galaxy recently developed by our group.

2016 ◽  
Vol 12 (S323) ◽  
pp. 339-340
Author(s):  
M. Mollá ◽  
O. Cavichia ◽  
R. D. D. Costa ◽  
W. J. Maciel

AbstractIn this work, we report physical parameters and abundances derived for a sample of 15 high extinction planetary nebulae located in the inner 2° of the Galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebulae luminosity function. The data provide chemical compositions for PNe located in this region of the bulge to explore the chemical enrichment history of the central region of the Galactic bulge. The results show that the abundances of our sample are skewed to higher metallicities than previous data in the outer regions of the bulge. This can indicate a faster chemical enrichment taking place at the Galactic centre.


2007 ◽  
Vol 3 (S245) ◽  
pp. 365-366
Author(s):  
Walter J. Maciel ◽  
R. D. D. Costa ◽  
A. V. Escudero

AbstractWe have used our dataset on the abundances of planetary nebulae (PN) to study the chemical evolution of the Galactic bulge. We have derived several relations involving the chemical abundances and computed three classes of models for the Galactic bulge: (i) one-zone, single-infall models, (ii) one-zone, double-infall models and (iii) multizone, double infall models. We conclude that part of the observational data can be understood in terms of the simpler models, but the full understanding of all observational constraints can only be explained by more complex multizone models.


1997 ◽  
Vol 180 ◽  
pp. 475-476
Author(s):  
M. G. Richer ◽  
G. Stasińska ◽  
M. L. McCall

We have obtained spectra of 28 planetary nebulae in the bulge of M31 using the MOS spectrograph at the Canada-France-Hawaii Telescope. Typically, we observed the [O II] λ3727 to He I λ5876 wavelength region at a resolution of approximately 1.6 å/pixel. For 19 of the 21 planetary nebulae whose [OIII]λ5007 luminosities are within 1 mag of the peak of the planetary nebula luminosity function, our oxygen abundances are based upon a measured [OIII]λ4363 intensity, so they are based upon a measured electron temperature. The oxygen abundances cover a wide range, 7.85 dex < 12 + log(O/H) < 9.09 dex, but the mean abundance is surprisingly low, 12 + log(O/H)–8.64 ± 0.32 dex, i.e., roughly half the solar value (Anders & Grevesse 1989). The distribution of oxygen abundances is shown in Figure 1, where the ordinate indicates the number of planetary nebulae with abundances within ±0.1 dex of any point on the x-axis. The dashed line indicates the mean abundance, and the dotted lines indicate the ±1 σ points. The shape of this abundance distribution seems to indicate that the bulge of M31 does not contain a large population of bright, oxygen-rich planetary nebulae. This is a surprising result, for various population synthesis studies (e.g., Bica et al. 1990) have found a mean stellar metallicity approximately 0.2 dex above solar. This 0.5 dex discrepancy leads one to question whether the mean stellar metallicity is as high as the population synthesis results indicate or if such metal-rich stars produce bright planetary nebulae at all. This could be a clue concerning the mechanism responsible for the variation in the number of bright planetary nebulae observed per unit luminosity in different galaxies (e.g., Hui et al. 1993).


2009 ◽  
Vol 5 (S265) ◽  
pp. 354-355
Author(s):  
Oscar Cavichia ◽  
Roberto D. D. Costa ◽  
Walter J. Maciel

AbstractNew abundances of planetary nebulae located towards the bulge of the Galaxy are derived based on observations made at LNA (Brazil). We present accurate abundances of the elements He, N, S, O, Ar, and Ne for 56 PNe located towards the galactic bulge. The data shows a good agreement with other results in the literature, in the sense that the distribution of the abundances is similar to those works. From the statistical analysis performed, we can suggest a bulge-disk interface at 2.2 kpc for the intermediate mass population, marking therefore the outer border of the bulge and inner border of the disk.


1993 ◽  
Vol 155 ◽  
pp. 581-581 ◽  
Author(s):  
N.A. Walton ◽  
M.J. Barlow ◽  
R.E.S. Clegg

We present abundance determinations, in particular of carbon, and C/O ratios, for 11 Galactic bulge planetary nebulae (PN) based on our low resolution UV data from IUE observations and optical spectrophotometry from the Anglo-Australian Telescope. We compare the observed abundances with those predicted by dredge-up theory for the high metallicity Galactic bulge. The sample abundances are also contrasted with the abundances found for PN in the Galactic disk. The mean C/O ratio for the bulge PN is significantly lower than that found for Galactic disk PN. Further, we present an abundance analysis of the very metal-poor bulge PN M2-29. From an analysis of the differential extinction found from the observed ratios of the He ii 1640,4686Å lines, we find that the ultraviolet reddening law towards the bulge is steeper than in the solar neighbourhood.


2000 ◽  
Vol 198 ◽  
pp. 234-235
Author(s):  
R. D. D. Costa ◽  
J. A. de Freitas Pacheco ◽  
T. P. Idiart

In this work we report new high quality spectroscopic data for a sample of PNe in the SMC, aiming to derive physical parameters and chemical abundances, in particular to settle the question concerning the oxygen discrepancy found for type I planetaries with respect to stars and HII regions.


1997 ◽  
Vol 180 ◽  
pp. 471-471 ◽  
Author(s):  
R. E. Carlos Reyes ◽  
J. E. Steiner ◽  
F. Elizalde

In the present work we have computed the physical parameters and chemical abundances for 45 planetary nebulae (PN) in the Large Magellanic Cloud (LMC) using the photoionization code CLOUDY, developed by Ferland (1993). CLOUDY is used as a subroutine in the code DIANA, developed by Elizalde & Steiner (1996), which minimises indices that measures the difference between the calculated and real nebula.


2018 ◽  
Vol 14 (S344) ◽  
pp. 161-177 ◽  
Author(s):  
Denise R. Gonçalves

AbstractThe Local Group contains a great number of dwarf irregulars and spheroidals, for which the spectroscopy of individual stars can be obtained. Thus, the chemical evolution of these galaxies can be traced, with the only need of finding populations spanning a large age range and such that we can accurately derive the composition. Planetary nebulae (PNe) are old- and intermediate-age star remnants and their chemical abundances can be obtained up to 3-4 Mpc. H ii regions, which are brighter and much easily detected, represent galaxies young content. PNe and H ii regions share similar spectroscopic features and are analysed in the same way. Both are among the best tracers of the chemical evolution allowing to draw the chemical time line of nearby galaxies. The focus in this review are the PN and H ii region populations as constraints to the chemical evolution models and the mass-metallicity relation of the local universe.


2003 ◽  
Vol 209 ◽  
pp. 625-628 ◽  
Author(s):  
George H. Jacoby ◽  
Orsola De Marco ◽  
Robin Ciardullo

Using the ESO 2.2m telescope with the 8K x 8K mosaic CCD, we surveyed 2.8 square degrees (~1.6° x 1.7°) of the SMC to search for faint planetary nebulae (PN). In this region, 34 PN were previously known; we identified 25 new objects. All of these are faint and have been spectroscopically confirmed. We estimate that there should be ~140 PN in the entire SMC to the limits of a survey like this one, which is complete to 6 mag down the planetary nebula luminosity function (PNLF). For a complete survey (8 mag down the PNLF), there should be ~220 PN. A strong new feature is evident in the PNLF as a deficiency at 4 mags below the brightest PN.The survey spectra that were used to confirm the candidates as PN show that the fainter PN exhibit a higher incidence (~28%) of strong [N II] emission (where I([N II]/I(Hα) > 1) relative to the bright Sanduleak et al. (1978) sample (~6%). We propose that the very faint SMC PN are selectively biased toward the chemically enriched Type I objects derived from younger, more massive progenitors.


Sign in / Sign up

Export Citation Format

Share Document