scholarly journals Evolutionary properties of stellar standard candles: Red clump, AGB clump and white dwarfs

2012 ◽  
Vol 8 (S289) ◽  
pp. 145-152
Author(s):  
Maurizio Salaris

AbstractThe location of the white dwarf cooling sequence in the colour–magnitude diagram of simple stellar populations, the magnitude of the red clump and the magnitude of the asymptotic giant branch clump are three stellar distance indicators based on advanced evolutionary phases of low-mass stars. With the present observational capabilities, they can be applied to reach distances ranging from the Galactic disk and halo populations, to galaxies within the Local Group. Techniques devised to exploit these distance indicators are presented, together with a discussion of their calibration and the main sources of systematic errors. A first semi-empirical calibration of the asymptotic giant branch absolute magnitude in both the I and K bands is also derived.

2000 ◽  
Vol 198 ◽  
pp. 540-546 ◽  
Author(s):  
Cristina Chiappini ◽  
Francesca Matteucci

In this work we present the predictions of a modified version of the ‘two-infall model’ (Chiappini et al. 1997 - CMG) for the evolution of 3He, 4He and D in the solar vicinity, as well as their distributions along the Galactic disk. In particular, we show that when allowing for extra-mixing process in low mass stars (M < 2.5 M⊙), as predicted by Charbonnel and do Nascimento (1998), a long standing problem in chemical evolution is solved, namely: the overproduction of 3He by the chemical evolution models as compared to the observed values in the sun and in the interstellar medium. Moreover, we show that chemical evolution models can constrain the primordial value of the deuterium abundance and that a value of (D/H)p < 3 × 10—5 is suggested by the present model. Finally, adopting the primordial 4He abundance suggested by Viegas et al. (1999), we obtain a value for ΔY/ΔZ ≃ 2 and a better agreement with the solar 4He abundance.


2009 ◽  
Vol 26 (3) ◽  
pp. 322-326 ◽  
Author(s):  
M. Lugaro ◽  
S. W. Campbell ◽  
S. E. de Mink

AbstractCarbon-enhanced metal-poor (CEMPs+r) stars show large enhancements of elements produced both by the slow and the rapid neutron capture processes (the s and r process, respectively) and represent a relatively large fraction, 30% to 50%, of the CEMP population. Many scenarios have been proposed to explain this peculiar chemical composition and most of them involve a binary companion producing the s-process elements during its Asymptotic Giant Branch (AGB) phase. The problem is that none of the proposed explanations appears to be able to account for all observational constraints, hence, alternatives are needed to be put forward and investigated. In this spirit, we propose a new scenario for the formation of CEMPs+r stars based on S. W. Campbell's finding that during the ‘dual core flash’ in low-mass stars of extremely low metallicity, when protons are ingested in the He-flash convective zone, a ‘neutron superburst’ is produced. Further calculations are needed to verify if this neutron superburst could make the r-process component observed in CEMPs+r, as well as their Fe abundances. The s-process component would then be produced during the following AGB phase.


1998 ◽  
Vol 11 (1) ◽  
pp. 53-57
Author(s):  
Robert P. Kraft

Only a bit more than 25 years ago, it seemed possible to assume that all Galactic globular clusters were chemically homogeneous. There were indications that star-to-star Fe abundance variations existed in ω Cen, but this massive cluster appeared to be unique. Following Osborn’s (1971) initial discovery, Zinn’s (1973) observation that M92 asymptotic giant branch (AGB) stars had weaker G-bands than subgiants with equivalent temperatures provided the first extensive evidence that there might be variations in the abundances of the light elements in an otherwise “normal” cluster. Since then star-to-star variations in the abundances of C, N, O, Na, Mg and Al have been observed in all cases in which sample sizes have exceeded 5-10 stars, e.g., in clusters such as M92, M15, M13, M3, ω Cen, MIO and M5. Among giants in these clusters one finds large surface O abundance differences, and these are intimately related to differences of other light element abundances, not only of C and N, but also of Na, Mg and Al (cf. reviews by Suntzeff 1993, Briley et al 1994, and Kraft 1994). The abundances of Na and O, as well as Al and Mg, are anticorrelated. Prime examples are found among giants in M15 (Sneden et al 1997), M13 (Pilachowski et al 1996; Shetrone 1996a,b; and Kraft et al 1997) and ω Cen (Norris & Da Costa 1995a,b). These observed anticorrelations almost certainly result from proton- capture chains that convert C to N, 0 to N, Ne to Na and Mg to Al in or near the hydrogen fusion layers of evolved cluster stars. But which stars? An appealing idea is that during the giant branch lifetimes of the low-mass stars that we now observe, substantial portions of the stellar envelopes have been cycled through regions near the H-burning shell where proton-capture nucleosynthesis can occur. This so-called “evolutionary” scenario involving deep envelope mixing in first ascent red giant branch (RGB) stars has been studied by Denissenkov & Denissenkova (1990), Langer & Hoffman (1995), Cavallo et al (1996, 1997) and Langer et al (1997). The mixing mechanism that brings proton-capture products to the surface is poorly understood (Denissenkov & Weiss 1996, Denissenkov et al 1997, Langer et al 1997), but deep mixing driven by angular momentum has been suggested (Sweigart & Mengel 1979, Kraft 1994, Langer & Hoffman 1995, Sweigart 1997).


1996 ◽  
Vol 169 ◽  
pp. 395-401
Author(s):  
M. Samland ◽  
G. Hensler

The stellar metallicity distribution of low-mass stars is one of the major touchstones for models describing the chemical evolution of our Galaxy. In contrast to the gaseous components, the abundances of the stellar components also reflect the temporal enrichment. Hence, the stellar metallicity distribution is a stringent test for evolutionary models of galaxies.


Author(s):  
S. Palmerini ◽  
S. Cristallo ◽  
M. Busso ◽  
M. La Cognata ◽  
M. L. Sergi ◽  
...  

Among presolar grains, oxide ones are made of oxygen, aluminum, and a small fraction of magnesium, produced by the 26Al decay. The largest part of presolar oxide grains belong to the so-called group 1 and 2, which have been suggested to form in Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) stars, respectively. However, standard stellar nucleosynthesis models cannot account for the 17O/16O, 18O/16O, and 26Al/27Al values recorded in those grains. Hence, for more than 20 years, the occurrence of mixing phenomena coupled with stellar nucleosynthesis have been suggested to account for this peculiar isotopic mix. Nowadays, models of massive AGB stars experiencing Hot Bottom Burning or low mass AGB stars where Cool Bottom Process, or another kind of extra-mixing, is at play, nicely fit the oxygen isotopic mix of group 2 oxide grains. The largest values of the 26Al/27Al ratio seem somewhat more difficult to account for.


1990 ◽  
Vol 354 ◽  
pp. 630 ◽  
Author(s):  
F. Kaeppeler ◽  
R. Gallino ◽  
M. Busso ◽  
G. Picchio ◽  
C. M. Raiteri

2010 ◽  
Vol 139 (6) ◽  
pp. 2679-2699 ◽  
Author(s):  
John J. Bochanski ◽  
Suzanne L. Hawley ◽  
Kevin R. Covey ◽  
Andrew A. West ◽  
I. Neill Reid ◽  
...  

2018 ◽  
Vol 617 ◽  
pp. A127 ◽  
Author(s):  
S. Pipien ◽  
J.-G. Cuby ◽  
S. Basa ◽  
C. J. Willott ◽  
J.-C. Cuillandre ◽  
...  

Being observed only one billion years after the Big Bang, z ∼ 7 quasars are a unique opportunity for exploring the early Universe. However, only two z ∼ 7 quasars have been discovered in near-infrared surveys: the quasars ULAS J1120+0641 and ULAS J1342+0928 at z = 7.09 and z = 7.54, respectively. The rarity of these distant objects, combined with the difficulty of distinguishing them from the much more numerous population of Galactic low-mass stars, requires using efficient selection procedures. The Canada-France High-z Quasar Survey in the Near Infrared (CFHQSIR) has been carried out to search for z ∼ 7 quasars using near-infrared and optical imaging from the Canada-France Hawaii Telescope (CFHT). Our data consist of ∼130 deg2 of Wide-field Infrared Camera (WIRCam) Y-band images up to a 5σ limit of YAB ∼ 22.4 distributed over the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) Wide fields. After follow-up observations in J band, a first photometric selection based on simple colour criteria led us to identify 36 sources with measured high-redshift quasar colours. However, we expect to detect only ∼2 quasars in the redshift range 6.8 < z < 7.5 down to a rest-frame absolute magnitude of M1450 = −24.6. With the motivation of ranking our high-redshift quasar candidates in the best possible way, we developed an advanced classification method based on Bayesian formalism in which we model the high-redshift quasars and low-mass star populations. The model includes the colour diversity of the two populations and the variation in space density of the low-mass stars with Galactic latitude, and it is combined with our observational data. For each candidate, we compute the probability of being a high-redshift quasar rather than a low-mass star. This results in a refined list of the most promising candidates. Our Bayesian selection procedure has proven to be a powerful technique for identifying the best candidates of any photometrically selected sample of objects, and it is easily extendable to other surveys.


2019 ◽  
Vol 486 (1) ◽  
pp. 1260-1282 ◽  
Author(s):  
Z H Zhang (张曾华) ◽  
A J Burgasser ◽  
M C Gálvez-Ortiz ◽  
N Lodieu ◽  
M R Zapatero Osorio ◽  
...  

ABSTRACT We presented 15 new T dwarfs that were selected from UKIRT Infrared Deep Sky Survey, Visible and Infrared Survey Telescope for Astronomy , and Wide-field Infrared Survey Explorer surveys, and confirmed with optical to near-infrared spectra obtained with the Very Large Telescope and the Gran Telescopio Canarias. One of these new T dwarfs is mildly metal-poor with slightly suppressed K-band flux. We presented a new X-shooter spectrum of a known benchmark sdT5.5 subdwarf, HIP 73786B. To better understand observational properties of brown dwarfs, we discussed transition zones (mass ranges) with low-rate hydrogen, lithium, and deuterium burning in brown dwarf population. The hydrogen burning transition zone is also the substellar transition zone that separates very low-mass stars, transitional, and degenerate brown dwarfs. Transitional brown dwarfs have been discussed in previous works of the Primeval series. Degenerate brown dwarfs without hydrogen fusion are the majority of brown dwarfs. Metal-poor degenerate brown dwarfs of the Galactic thick disc and halo have become T5+ subdwarfs. We selected 41 T5+ subdwarfs from the literature by their suppressed K-band flux. We studied the spectral-type–colour correlations, spectral-type–absolute magnitude correlations, colour–colour plots, and HR diagrams of T5+ subdwarfs, in comparison to these of L–T dwarfs and L subdwarfs. We discussed the T5+ subdwarf discovery capability of deep sky surveys in the 2020s.


Sign in / Sign up

Export Citation Format

Share Document