scholarly journals Main-Belt Comets as Tracers of Ice in the Inner Solar System

2012 ◽  
Vol 8 (S293) ◽  
pp. 212-218 ◽  
Author(s):  
Henry H. Hsieh

AbstractAs a recently recognized class of objects exhibiting apparently cometary (sublimation-driven) activity yet orbiting completely within the main asteroid belt, main-belt comets (MBCs) have revealed the existence of present-day ice in small bodies in the inner solar system and offer an opportunity to better understand the thermal and compositional history of our solar system, and by extension, those of other planetary systems as well. Achieving these overall goals, however, will require meeting various intermediate research objectives, including discovering many more MBCs than the currently known seven objects in order to ascertain the population's true abundance and distribution, confirming that water ice sublimation is in fact the driver of activity in these objects, and improving our understanding of the physical, dynamical, and thermal evolutionary processes that have acted on this population over the age of the solar system.

2021 ◽  
Vol 922 (1) ◽  
pp. L8 ◽  
Author(s):  
Colin Orion Chandler ◽  
Chadwick A. Trujillo ◽  
Henry H. Hsieh

Abstract We present archival observations of main-belt asteroid (248370) 2005 QN173 (also designated 433P) that demonstrate this recently discovered active asteroid (a body with a dynamically asteroidal orbit displaying a tail or coma) has had at least one additional apparition of activity near perihelion during a prior orbit. We discovered evidence of this second activity epoch in an image captured 2016 July 22 with the DECam on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. As of this writing, (248370) 2005 QN173 is just the eighth active asteroid demonstrated to undergo recurrent activity near perihelion. Our analyses demonstrate (248370) 2005 QN173 is likely a member of the active asteroid subset known as main-belt comets, a group of objects that orbit in the main asteroid belt that exhibit activity that is specifically driven by sublimation. We implement an activity detection technique, wedge photometry, that has the potential to detect tails in images of solar system objects and quantify their agreement with computed antisolar and antimotion vectors normally associated with observed tail directions. We present a catalog and an image gallery of archival observations. The object will soon become unobservable as it passes behind the Sun as seen from Earth, and when it again becomes visible (late 2022) it will be farther than 3 au from the Sun. Our findings suggest (248370) 2005 QN173 is most active interior to 2.7 au (0.3 au from perihelion), so we encourage the community to observe and study this special object before 2021 December.


2015 ◽  
Vol 10 (S318) ◽  
pp. 99-110
Author(s):  
Henry H. Hsieh

AbstractOur knowledge of main-belt comets (MBCs), which exhibit comet-like activity likely due to the sublimation of volatile ices, yet orbit in the main asteroid belt, has increased greatly since the discovery of the first known MBC, 133P/Elst-Pizarro, in 1996, and their recognition as a new class of solar system objects after the discovery of two more MBCs in 2005. I review work that has been done over the last 10 years to improve our understanding of these enigmatic objects, including the development of systematic discovery methods and diagnostics for distinguishing MBCs from disrupted asteroids (which exhibit comet-like activity due to physical disruptions such as impacts or rotational destabilization). I also discuss efforts to understand the dynamical and thermal properties of these objects.


2019 ◽  
Vol 9 (1) ◽  
pp. 3-7 ◽  
Author(s):  
E. Yu. Musiichuk ◽  
S. A. Borysenko

Periodic comets of different dynamical groups with orbits at 2–5 AU still occasionally active. The observed dust activity of such objects can be connected with the processes of water ice sublimation (MBCs) or crystallisation of amorphous water ice (QHCs) as well as with external causes. Despite the absence of connections between cometary flares and cyclic variations of solar activity indexes, some individual solar flares can affect the brightness of comets. Cometary objects in the main asteroid belt have lower statistic of flares than comets at orbits similar to quasi-Hilda objects.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Q. H. S. Chan ◽  
A. Stephant ◽  
I. A. Franchi ◽  
X. Zhao ◽  
R. Brunetto ◽  
...  

AbstractUnderstanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD =  + 4868 ± 2288‰; δ15N =  + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.


1974 ◽  
Vol 3 ◽  
pp. 489-489
Author(s):  
M. W. Ovenden

AbstractThe intuitive notion that a satellite system will change its configuration rapidly when the satellites come close together, and slowly when they are far apart, is generalized to ‘The Principle of Least Interaction Action’, viz. that such a system will most often be found in a configuration for which the time-mean of the action associated with the mutual interaction of the satellites is a minimum. The principle has been confirmed by numerical integration of simulated systems with large relative masses. The principle lead to the correct prediction of the preference, in the solar system, for nearly-commensurable periods. Approximate methods for calculating the evolution of an actual satellite system over periods ˜ 109 yr show that the satellite system of Uranus, the five major satellites of Jupiter, and the five planets of Barnard’s star recently discovered, are all found very close to their respective minimum interaction distributions. Applied to the planetary system of the Sun, the principle requires that there was once a planet of mass ˜ 90 Mθ in the asteroid belt, which ‘disappeared’ relatively recently in the history of the solar system.


2020 ◽  
Vol 497 (1) ◽  
pp. L46-L49 ◽  
Author(s):  
A Morbidelli ◽  
K Batygin ◽  
R Brasser ◽  
S N Raymond

ABSTRACT In two recent papers published in MNRAS, Namouni and Morais claimed evidence for the interstellar origin of some small Solar system bodies, including: (i) objects in retrograde co-orbital motion with the giant planets and (ii) the highly inclined Centaurs. Here, we discuss the flaws of those papers that invalidate the authors’ conclusions. Numerical simulations backwards in time are not representative of the past evolution of real bodies. Instead, these simulations are only useful as a means to quantify the short dynamical lifetime of the considered bodies and the fast decay of their population. In light of this fast decay, if the observed bodies were the survivors of populations of objects captured from interstellar space in the early Solar system, these populations should have been implausibly large (e.g. about 10 times the current main asteroid belt population for the retrograde co-orbital of Jupiter). More likely, the observed objects are just transient members of a population that is maintained in quasi-steady state by a continuous flux of objects from some parent reservoir in the distant Solar system. We identify in the Halley-type comets and the Oort cloud the most likely sources of retrograde co-orbitals and highly inclined Centaurs.


2020 ◽  
Vol 639 ◽  
pp. A9
Author(s):  
P. S. Zain ◽  
G. C. de Elía ◽  
R. P. Di Sisto

Aims. We developed a six-part collisional evolution model of the main asteroid belt (MB) and used it to study the contribution of the different regions of the MB to the near-Earth asteroids (NEAs). Methods. We built a statistical code called ACDC that simulates the collisional evolution of the MB split into six regions (namely Inner, Middle, Pristine, Outer, Cybele and High-Inclination belts) according to the positions of the major resonances present there (ν6, 3:1J, 5:2J, 7:3J and 2:1J). We consider the Yarkovsky effect and the mentioned resonances as the main mechanism that removes asteroids from the different regions of the MB and delivers them to the NEA region. We calculated the evolution of the NEAs coming from the different source regions by considering the bodies delivered by the resonances and mean dynamical timescales in the NEA population. Results. Our model is in agreement with the major observational constraints associated with the MB, such as the size distributions of the different regions of the MB and the number of large asteroid families. It is also able to reproduce the observed NEAs with H < 16 and agrees with recent estimations for H < 20, but deviates for smaller sizes. We find that most sources make a significant contribution to the NEAs; however the Inner and Middle belts stand out as the most important source of NEAs followed by the Outer belt. The contributions of the Pristine and Cybele regions are minor. The High-Inclination belt is the source of only a fraction of the actual observed NEAs with high inclination, as there are dynamical processes in that region that enable asteroids to increase and decrease their inclinations.


2015 ◽  
Vol 10 (S318) ◽  
pp. 9-15
Author(s):  
Gal Sarid ◽  
Sarah T. Stewart ◽  
Zoë M. Leinhardt

AbstractErosive collisions among planetary embryos in the inner solar system can lead to multiple remnant bodies, varied in mass, composition and residual velocity. Some of the smaller, unbound debris may become available to seed the main asteroid belt. The makeup of these collisionally produced bodies is different from the canonical chondritic composition, in terms of rock/iron ratio and may contain further shock-processed material. Having some of the material in the asteroid belt owe its origin from collisions of larger planetary bodies may help in explaining some of the diversity and oddities in composition of different asteroid groups.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Timothy O’Brien ◽  
John A. Tarduno ◽  
Atma Anand ◽  
Aleksey V. Smirnov ◽  
Eric G. Blackman ◽  
...  

AbstractMeteorite magnetizations can provide rare insight into early Solar System evolution. Such data take on new importance with recognition of the isotopic dichotomy between non-carbonaceous and carbonaceous meteorites, representing distinct inner and outer disk reservoirs, and the likelihood that parent body asteroids were once separated by Jupiter and subsequently mixed. The arrival time of these parent bodies into the main asteroid belt, however, has heretofore been unknown. Herein, we show that weak CV (Vigarano type) and CM (Mighei type) carbonaceous chondrite remanent magnetizations indicate acquisition by the solar wind 4.2 to 4.8 million years after Ca-Al-rich inclusion (CAI) formation at heliocentric distances of ~2–4 AU. These data thus indicate that the CV and CM parent asteroids had arrived near, or within, the orbital range of the present-day asteroid belt from the outer disk isotopic reservoir within the first 5 million years of Solar System history.


2020 ◽  
Author(s):  
Jiangchuan Huang ◽  
Xiaojing Zhang ◽  
Tong Wang ◽  
Zhuoxi Huo ◽  
Xian Shi ◽  
...  

&lt;p align=&quot;left&quot;&gt;&lt;span&gt;The past twenty years have seen an evolution in the definition and categorization of small bodies in the Solar System. While new types of bodies are being discovered at an increasing pace, objects familiar to us have been rediscovered with traits previously unknown, resulting in &amp;#8220;hybrid&amp;#8221; bodies like &amp;#8220;Main-belt comets&amp;#8221; or &amp;#8220;active asteroids&amp;#8221; [1]. New knowledges of small bodies are essential to further our understanding of the solar system as they directly shed light on planetary formation and evolution scenarios, the distribution and migration of water, and the emergence of life. To get a full picture of these small bodies, it is necessary to carry out detailed and comprehensive investigations, especially with dedicated space missions. As demonstrated by the success of a number of such missions recently completed and ongoing, a growing consensus is emerging that future missions should: 1) cover a diversity of targets, especially those never visited before; 2) characterize the structure and composition of the target body with highest possible resolution. The first Chinese small body mission is designed to take on both challenges by performing sample return from a quasi-satellite of the Earth&amp;#8212;2016 HO3 and visiting for the first time a &amp;#8220;main-belt comet&amp;#8221;--133P/Elst-Pizarro.&lt;/span&gt;&lt;/p&gt; &lt;p align=&quot;left&quot;&gt;&lt;a name=&quot;_GoBack&quot;&gt;&lt;/a&gt;&lt;span&gt;In April 2019, CNSA released an open call of onboard opportunity for an asteroid exploration mission [2]&lt;span lang=&quot;zh-CN&quot;&gt;&amp;#65292;&lt;/span&gt;which encourages international cooperation. This asteroid exploration mission is characterized by multi-task, multi-target and multi-mode (e. g. joint exploration by multiple devices, landing and sampling etc.). On the basis of feasibility demonstration, design research and key techniques research, various work of the mission is currently in progress, such as the scientific research of small celestial particles, that is, combining remote sensing and surface in-situ measurement data and features of different scales (sub-millimeter to decimeter) to obtain clues of composition and evolution of small bodies. &lt;/span&gt;&lt;/p&gt; &lt;p align=&quot;left&quot;&gt;&amp;#160;&lt;/p&gt; &lt;p align=&quot;left&quot;&gt;&lt;span&gt;[1] Hsieh, Henry H., David C. Jewitt, and Yanga R. Fern&amp;#225;ndez. The Astronomical Journal 127(5):2997. (2004).&lt;/span&gt;&lt;/p&gt; &lt;p align=&quot;left&quot;&gt;&lt;span&gt;[2] http://www.cnsa.gov.cn/n6758823/n6758839/c6805886/part/6780392.pdf &lt;/span&gt;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document