scholarly journals Arrival and magnetization of carbonaceous chondrites in the asteroid belt before 4562 million years ago

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Timothy O’Brien ◽  
John A. Tarduno ◽  
Atma Anand ◽  
Aleksey V. Smirnov ◽  
Eric G. Blackman ◽  
...  

AbstractMeteorite magnetizations can provide rare insight into early Solar System evolution. Such data take on new importance with recognition of the isotopic dichotomy between non-carbonaceous and carbonaceous meteorites, representing distinct inner and outer disk reservoirs, and the likelihood that parent body asteroids were once separated by Jupiter and subsequently mixed. The arrival time of these parent bodies into the main asteroid belt, however, has heretofore been unknown. Herein, we show that weak CV (Vigarano type) and CM (Mighei type) carbonaceous chondrite remanent magnetizations indicate acquisition by the solar wind 4.2 to 4.8 million years after Ca-Al-rich inclusion (CAI) formation at heliocentric distances of ~2–4 AU. These data thus indicate that the CV and CM parent asteroids had arrived near, or within, the orbital range of the present-day asteroid belt from the outer disk isotopic reservoir within the first 5 million years of Solar System history.

Science ◽  
2020 ◽  
Vol 370 (6517) ◽  
pp. eabc3557 ◽  
Author(s):  
H. H. Kaplan ◽  
D. S. Lauretta ◽  
A. A. Simon ◽  
V. E. Hamilton ◽  
D. N. DellaGiustina ◽  
...  

The composition of asteroids and their connection to meteorites provide insight into geologic processes that occurred in the early Solar System. We present spectra of the Nightingale crater region on near-Earth asteroid Bennu with a distinct infrared absorption around 3.4 micrometers. Corresponding images of boulders show centimeters-thick, roughly meter-long bright veins. We interpret the veins as being composed of carbonates, similar to those found in aqueously altered carbonaceous chondrite meteorites. If the veins on Bennu are carbonates, fluid flow and hydrothermal deposition on Bennu’s parent body would have occurred on kilometer scales for thousands to millions of years. This suggests large-scale, open-system hydrothermal alteration of carbonaceous asteroids in the early Solar System.


2020 ◽  
Vol 497 (1) ◽  
pp. L46-L49 ◽  
Author(s):  
A Morbidelli ◽  
K Batygin ◽  
R Brasser ◽  
S N Raymond

ABSTRACT In two recent papers published in MNRAS, Namouni and Morais claimed evidence for the interstellar origin of some small Solar system bodies, including: (i) objects in retrograde co-orbital motion with the giant planets and (ii) the highly inclined Centaurs. Here, we discuss the flaws of those papers that invalidate the authors’ conclusions. Numerical simulations backwards in time are not representative of the past evolution of real bodies. Instead, these simulations are only useful as a means to quantify the short dynamical lifetime of the considered bodies and the fast decay of their population. In light of this fast decay, if the observed bodies were the survivors of populations of objects captured from interstellar space in the early Solar system, these populations should have been implausibly large (e.g. about 10 times the current main asteroid belt population for the retrograde co-orbital of Jupiter). More likely, the observed objects are just transient members of a population that is maintained in quasi-steady state by a continuous flux of objects from some parent reservoir in the distant Solar system. We identify in the Halley-type comets and the Oort cloud the most likely sources of retrograde co-orbitals and highly inclined Centaurs.


2019 ◽  
Vol 5 (11) ◽  
pp. eaax5078 ◽  
Author(s):  
Megumi Matsumoto ◽  
Akira Tsuchiyama ◽  
Aiko Nakato ◽  
Junya Matsuno ◽  
Akira Miyake ◽  
...  

Carbonaceous chondrites are meteorites believed to preserve our planet’s source materials, but the precise nature of these materials still remains uncertain. To uncover pristine planetary materials, we performed synchrotron radiation–based x-ray computed nanotomography of a primitive carbonaceous chondrite, Acfer 094, and found ultraporous lithology (UPL) widely distributed in a fine-grained matrix. UPLs are porous aggregates of amorphous and crystalline silicates, Fe─Ni sulfides, and organics. The porous texture must have been formed by removal of ice previously filling pore spaces, suggesting that UPLs represent fossils of primordial ice. The ice-bearing UPLs formed through sintering of fluffy icy dust aggregates around the H2O snow line in the solar nebula and were incorporated into the Acfer 094 parent body, providing new insight into asteroid formation by dust agglomeration.


2021 ◽  
Vol 7 (17) ◽  
pp. eabg9707
Author(s):  
Akira Tsuchiyama ◽  
Akira Miyake ◽  
Satoshi Okuzumi ◽  
Akira Kitayama ◽  
Jun Kawano ◽  
...  

Water is abundant as solid ice in the solar system and plays important roles in its evolution. Water is preserved in carbonaceous chondrites as hydroxyl and/or H2O molecules in hydrous minerals, but has not been found as liquid. To uncover such liquid, we performed synchrotron-based x-ray computed nanotomography and transmission electron microscopy with a cryo-stage of the aqueously altered carbonaceous chondrite Sutter’s Mill. We discovered CO2-bearing fluid (CO2/H2O > ~0.15) in a nanosized inclusion incorporated into a calcite crystal, appearing as CO2 ice and/or CO2 hydrate at 173 K. This is direct evidence of dynamic evolution of the solar system, requiring the Sutter’s Mill’s parent body to have formed outside the CO2 snow line and later transportation to the inner solar system because of Jupiter’s orbital instability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mehmet Yesiltas ◽  
Timothy D. Glotch ◽  
Bogdan Sava

AbstractMeteorites contain organic matter that may have contributed to the origin of life on Earth. Carbonyl compounds such as aldehydes and carboxylic acids, which occur in meteorites, may be precursors of biologically necessary organic materials in the solar system. Therefore, such organic matter is of astrobiological importance and their detection and characterization can contribute to the understanding of the early solar system as well as the origin of life. Most organic matter is typically sub-micrometer in size, and organic nanoglobules are even smaller (50–300 nm). Novel analytical techniques with nanoscale spatial resolution are required to detect and characterize organic matter within extraterrestrial materials. Most techniques require powdered samples, consume the material, and lose petrographic context of organics. Here, we report the detection of nanoglobular aldehyde and carboxylic acids in a highly primitive carbonaceous chondrite (DOM 08006) with ~ 20 nm spatial resolution using nano-FTIR spectroscopy. Such organic matter is found within the matrix of DOM 08006 and is typically 50–300 nm in size. We also show petrographic context and nanoscale morphologic/topographic features of the organic matter. Our results indicate that prebiotic carbonyl nanoglobules can form in a less aqueous and relatively elevated temperature-environment (220–230 °C) in a carbonaceous parent body.


The characteristics of the remanent magnetization of chondrite, achondrite and shergottite, nakhlite and chassignite (SNC) meteorites are described, and interpretation in terms of magnetizing fields in the ancient Solar System discussed. The magnetism of ordinary chondrites is commonly scattered in direction within samples, implying magnetization of constituent fragments before accumulation. The magnetic history of these meteorites is uncertain because of lack of knowledge of the origin and properties of tetrataenite, an ordered FeNi alloy often carrying the bulk of the magnetization. Achondrites also often possess scattered magnetization, the primary component probably being acquired during cooling after differentiation of the parent body. A magnetizing field of internal origin is possible. Estimates of magnetizing field strength are in the approximate range 5-100 μ T, with carbonaceous chondrites showing the highest values. The SNC meteorites, probably originating on Mars, provide evidence for a weak, ancient Martian magnetic field of the order 1 μ T.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Kosuke Kurosawa ◽  
Ryota Moriwaki ◽  
Hikaru Yabuta ◽  
Ko Ishibashi ◽  
Goro Komatsu ◽  
...  

AbstractCarbonaceous asteroids, including Ryugu and Bennu, which have been explored by the Hayabusa2 and OSIRIS-REx missions, were probably important carriers of volatiles to the inner Solar System. However, Ryugu has experienced significant volatile loss, possibly from hypervelocity impact heating. Here we present impact experiments at speeds comparable to those expected in the main asteroid belt (3.7 km s−1 and 5.8 km s−1) and with analogue target materials. We find that loss of volatiles from the target material due to impacts is not sufficient to account for the observed volatile depletion of Ryugu. We propose that mutual collisions in the main asteroid belt are unlikely to be solely responsible for the loss of volatiles from Ryugu or its parent body. Instead, we suggest that additional processes, for example associated with the diversity in mechanisms and timing of their formation, are necessary to account for the variable volatile contents of carbonaceous asteroids.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Q. H. S. Chan ◽  
A. Stephant ◽  
I. A. Franchi ◽  
X. Zhao ◽  
R. Brunetto ◽  
...  

AbstractUnderstanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD =  + 4868 ± 2288‰; δ15N =  + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.


2020 ◽  
Vol 6 (42) ◽  
pp. eaay2724
Author(s):  
Alexander N. Krot ◽  
Kazuhide Nagashima ◽  
James R. Lyons ◽  
Jeong-Eun Lee ◽  
Martin Bizzarro

The Sun is 16O-enriched (Δ17O = −28.4 ± 3.6‰) relative to the terrestrial planets, asteroids, and chondrules (−7‰ < Δ17O < 3‰). Ca,Al-rich inclusions (CAIs), the oldest Solar System solids, approach the Sun’s Δ17O. Ultraviolet CO self-shielding resulting in formation of 16O-rich CO and 17,18O-enriched water is the currently favored mechanism invoked to explain the observed range of Δ17O. However, the location of CO self-shielding (molecular cloud or protoplanetary disk) remains unknown. Here we show that CAIs with predominantly low (26Al/27Al)0, <5 × 10−6, exhibit a large inter-CAI range of Δ17O, from −40‰ to −5‰. In contrast, CAIs with the canonical (26Al/27Al)0 of ~5 × 10−5 from unmetamorphosed carbonaceous chondrites have a limited range of Δ17O, −24 ± 2‰. Because CAIs with low (26Al/27Al)0 are thought to have predated the canonical CAIs and formed within first 10,000–20,000 years of the Solar System evolution, these observations suggest oxygen isotopic heterogeneity in the early solar system was inherited from the protosolar molecular cloud.


2010 ◽  
Vol 291 (1-4) ◽  
pp. 39-47 ◽  
Author(s):  
R.G.A. Baker ◽  
M. Schönbächler ◽  
M. Rehkämper ◽  
H.M. Williams ◽  
A.N. Halliday

Sign in / Sign up

Export Citation Format

Share Document