A detailed study toward the Water fountain IRAS 15445-5449

2017 ◽  
Vol 13 (S336) ◽  
pp. 355-358
Author(s):  
Andrés F. Pérez-Sánchez ◽  
Rebeca García López ◽  
Wouter Vlemmings ◽  
Daniel Tafoya

AbstractPost-Asymptotic giant branch (post-ABG) sources with high-velocity spectral features of H2O maser emission detected toward their circumstellar envelopes (CSEs) are known as Water Fountain (WF) nebulae. These are low- or intermediate-mass Galactic stellar sources that are undergoing the late stages of an intense mass-loss process. The velocity and the spatial distribution of the H2O maser spectral features can provide information about the kinematics of the molecular gas component of their CSEs. Hence, observational studies toward WF nebulae could help to better understand the formation of the asymmetric structures (hundred to thousand AUs) commonly seen toward Planetary nebulae (PNe). Here we present preliminary results of observations done toward the WF IRAS 15445-5449 using the Australia Telescope Compact Array (ATCA) and the Very Large Telescope (SINFONI/VLT). Assuming that the pumping of the H2O maser transitions is a consequence of shocks between different velocity winds, the spatial distribution of the emission shed light on the scales of the regions affected by the propagation of the shock-fronts.

Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 94 ◽  
Author(s):  
Carmen Contreras ◽  
Javier Alcolea ◽  
Valentín Bujarrabal ◽  
Arancha Castro-Carrizo

We present recent Atacama Large Millimeter/submillimeter Array (ALMA)-based studies of circumstellar envelopes (CSEs) around Asymptotic Giant Branch (AGB) stars and pre-Planetary Nebulae (pPNe). In only a few years of operation, ALMA is revolutionising the field of AGB-to-PN research by providing unprecedentedly detailed information on the complex nebular architecture (at large but also on small scales down to a few ∼10 AU from the centre), dynamics and chemistry of the outflows/envelopes of low-to-intermediate mass stars in their late stages of the evolution. Here, we focus on continuum and molecular line mapping studies with high angular resolution and sensitivity of some objects that are key to understanding the complex PN-shaping process. In particular, we offer (i) a brief summary of ALMA observations of rotating disks in post-AGB objects and (ii) report on ALMA observations of OH 231.8+4.2 providing the most detailed and accurate description of the global nebular structure and kinematics of this iconic object to date.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 233
Author(s):  
Ambra Nanni ◽  
Sergio Cristallo ◽  
Jacco Th. van Loon ◽  
Martin A. T. Groenewegen

Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condensed into dust grains formed in their extended circumstellar envelopes. Among these stars, carbon-rich TP-AGB stars (C-stars) are particularly relevant for the chemical enrichment of galaxies. We here investigated the role of the metallicity in the dust formation process from a theoretical viewpoint. Methods: We coupled an up-to-date description of dust growth and dust-driven wind, which included the time-averaged effect of shocks, with FRUITY stellar evolutionary tracks. We compared our predictions with observations of C-stars in our Galaxy, in the Magellanic Clouds (LMC and SMC) and in the Galactic Halo, characterised by metallicity between solar and 1/10 of solar. Results: Our models explained the variation of the gas and dust content around C-stars derived from the IRS Spitzer spectra. The wind speed of the C-stars at varying metallicity was well reproduced by our description. We predicted the wind speed at metallicity down to 1/10 of solar in a wide range of mass-loss rates.


2002 ◽  
Vol 577 (2) ◽  
pp. 961-973 ◽  
Author(s):  
F. Herpin ◽  
J. R. Goicoechea ◽  
J. R. Pardo ◽  
J. Cernicharo

2020 ◽  
Vol 633 ◽  
pp. A135 ◽  
Author(s):  
C. Abia ◽  
P. de Laverny ◽  
S. Cristallo ◽  
G. Kordopatis ◽  
O. Straniero

Context. Stars evolving along the asymptotic giant branch (AGB) can become carbon rich in the final part of their evolution. The detailed description of their spectra has led to the definition of several spectral types: N, SC, J, and R. To date, differences among them have been partially established only on the basis of their chemical properties. Aims. An accurate determination of the luminosity function (LF) and kinematics together with their chemical properties is extremely important for testing the reliability of theoretical models and establishing on a solid basis the stellar population membership of the different carbon star types. Methods. Using Gaia Data Release 2 (Gaia DR2) astrometry, we determine the LF and kinematic properties of a sample of 210 carbon stars with different spectral types in the solar neighbourhood with measured parallaxes better than 20%. Their spatial distribution and velocity components are also derived. Furthermore, the use of the infrared Wesenheit function allows us to identify the different spectral types in a Gaia-2MASS diagram. Results. We find that the combined LF of N- and SC-type stars are consistent with a Gaussian distribution peaking at Mbol ∼ −5.2 mag. The resulting LF, however, shows two tails at lower and higher luminosities more extended than those previously found, indicating that AGB carbon stars with solar metallicity may reach Mbol ∼ −6.0 mag. This contrasts with the narrower LF derived in Galactic carbon Miras from previous studies. We find that J-type stars are about half a magnitude fainter on average than N- and SC-type stars, while R-hot stars are half a magnitude brighter than previously found, although fainter in any case by several magnitudes than other carbon types. Part of these differences are due to systematically lower parallaxes measured by Gaia DR2 with respect to HIPPARCOS values, in particular for sources with parallax ϖ < 1 mas. The Galactic spatial distribution and velocity components of the N-, SC-, and J-type stars are very similar, while about 30% of the R-hot stars in the sample are located at distances greater than ∼500 pc from the Galactic plane, and show a significant drift with respect to the local standard of rest. Conclusions. The LF derived for N- and SC-type in the solar neighbourhood fully agrees with the expected luminosity of stars of 1.5−3 M⊙ on the AGB. On a theoretical basis, the existence of an extended low-luminosity tail would require a contribution of extrinsic low-mass carbon stars, while the high-luminosity tail would imply that stars with mass values up to ∼5 M⊙ may become carbon stars on the AGB. J-type stars differ significantly not only in their chemical composition with respect to the N- and SC-types, but also in their LF, which reinforces the idea that these carbon stars belong to a different type whose origin is still unknown. The derived luminosities of R-hot stars means that it is unlikely that these stars are in the red-clump, as previously claimed. On the other hand, the derived spatial distribution and kinematic properties, together with their metallicity values, indicate that most of the N-, SC-, and J-type stars belong to the thin disc population, while a significant fraction of R-hot stars show characteristics compatible with the thick disc.


1999 ◽  
Vol 191 ◽  
pp. 363-372
Author(s):  
V. Bujarrabal

Due to the low excitation requirements and easy observation from the ground, molecular line observations probably constitute our main source of empirical knowledge on circumstellar envelopes (CSEs) around AGB stars. The CO rotational transitions, the most intense ‘thermal’ lines, are efficiently used to determine the total gas content and its spatial distribution in wide samples of objects. Thermal emission from other molecules is mainly useful in order to study their abundances and the chemical reactions taking place in CSEs. Maser lines are easily observed due to their high intensity and the flux distribution in very compact spatial spots and narrow profile spikes, characteristic of the exponential amplification; however the data interpretation is difficult due to the intricate pumping processes. The most important maser lines (of SiO, H2O and OH) arise from very different regions, which allows the study of various components of the CSEs. We will focus here on SiO masers.


1994 ◽  
Vol 146 ◽  
pp. 113-133
Author(s):  
Hans Olofsson

Red giant stars on the asymptotic giant branch (AGB), AGB-stars, lose copious amounts of matter in a slow stellar wind (Olofsson 1993). Mass loss rates in excess of 10-4M⊙yr-1have been measured. The primary observational consequence of this mass loss is the formation of an expanding envelope of gas and dust, a circumstellar envelope (CSE), that surrounds the star. This is a truly extended atmosphere that continues thousands of stellar radii away from the star. At the highest mass loss rates (which probably occur at the end of the AGB evolution) the CSE becomes so opaque that the photosphere is hidden and essentially all information about the object stems from the circumstellar emission. At some point on the AGB a star may change from being O-rich (i.e., the abundance of O is higher than that of C) to becoming C-rich (i.e., a carbon star where the abundance of C is higher than that of O) as a result of nuclear-processed material being dredged up to the surface. The chemical composition of the CSE will follow that of the central star, although with some time delay so that there may be some rare cases of O-rich CSEs around carbon stars. The mass loss decreases and changes its nature as the star leaves the AGB and starts its post-AGB evolution. Eventually the star becomes hot enough to ionize the inner part of the AGB-CSE and a planetary nebula (PN) is formed. The ultimate fate of the star is a long life as a slowly cooling white dwarf. The CSE will gradually disperse and its metal-enriched matter will mix with the interstellar medium, and thereby it contributes to the chemical evolution of a galaxy. The intense mass loss makes it possible for stars as massive as 8 M⊙, i.e., the bulk of all stars in a galaxy, to follow this evolutionary sequence. Similar CSEs are also found around supergiants.


1989 ◽  
Vol 106 ◽  
pp. 369-369
Author(s):  
A. Heske

Circumstellar envelopes of cool giants and supergiants contain atomic and molecular gas, and dust. The charateristic spectral features of these different components can be observed at optical (atoms), at radio (molecules) and at infrared wavelengths (dust). Since the detection of circumstellar matter around giants and supergiants most studies concentrated on detemining mass loss rates from observations of a single component assuming steady mass loss during late stellar evolution. Nevertheless, the IRAS colour colour diagramme and evolutionary models rather point to a non steady evolution during the mass loss phase of the star.


2008 ◽  
Vol 4 (S251) ◽  
pp. 341-342
Author(s):  
Ernst Zinner

AbstractUltimately, all of the solids in the Solar System, including ourselves, consist of elements that were made in stars by stellar nucelosynthesis. However, most of the material from many different stellar sources that went into the making of the Solar System was thoroughly mixed, obliterating any information about its origin. An exception are tiny grains of preserved stardust found in primitive meteorites, micrometeorites, and interplanetary dust particles. These μm- and sub-μm-sized presolar grains are recognized as stardust by their isotopic compositions, which are completely different from those of the Solar System. They condensed in outflows from late-type stars and in SN ejecta and were included in meteorites, from which they can be isolated and studied for their isotopic compositions in the laboratory. Thus these grains constitute a link between us and our stellar ancestors. They provide new information on stellar evolution, nucleosynthesis, mixing processes in asymptotic giant branch (AGB) stars and supernovae, and galactic chemical evolution. Red giants, AGB stars, Type II supernovae, and possibly novae have been identified as stellar sources of the grains. Stardust phases identified so far include silicates, oxides such as corundum, spinel, and hibonite, graphite, silicon carbide, silicon nitride, titanium carbide, and Fe-Ni metal.


2012 ◽  
Vol 8 (S287) ◽  
pp. 217-224 ◽  
Author(s):  
J.-F. Desmurs

AbstractThis contribution reviews recent observational results concerning astronomical masers toward post-AGB objects with a special attention to water fountain sources and the prototypical source OH 231.8+4.2. These sources represent a short transition phase in the evolution between circumstellar envelopes around asymptotic giant branch stars and planetary nebulae. The main masing species are considered and key results are summarized.


Sign in / Sign up

Export Citation Format

Share Document