scholarly journals A New Technique to Provide Realistic Input to CME Forecasting Models

2017 ◽  
Vol 13 (S335) ◽  
pp. 258-262 ◽  
Author(s):  
Nat Gopalswamy ◽  
Sachiko Akiyama ◽  
Seiji Yashiro ◽  
Hong Xie

AbstractWe report on a technique to construct a flux rope (FR) from eruption data at the Sun. The technique involves line-of-sight magnetic fields, post-eruption arcades in the corona, and white-light coronal mass ejections (CMEs) so that the FR geometric and magnetic properties can be fully defined in addition to the kinematic properties. We refer to this FR as FRED (Flux Rope from Eruption Data). We illustrate the FRED construction using the 2012 July 12 eruption and compare the coronal and interplanetary properties of the FR. The results indicate that the FRED input should help make realistic predictions of the components of the FR magnetic field in the heliosphere.

1996 ◽  
Vol 176 ◽  
pp. 201-216
Author(s):  
Sami K. Solanki

The magnetic field of the Sun is mainly concentrated into intense magnetic flux tubes having field strengths of the order of 1 kG. In this paper an overview is given of the thermal and magnetic properties of these flux tubes, which are known to exhibit a large range in size, from the smallest magnetic elements to sunspots. Differences and similarities between the largest and smallest features are stressed. Some thoughts are also presented on how the properties of magnetic flux tubes are expected to scale from the solar case to that of solar-like stars. For example, it is pointed out that on giants and supergiants turbulent pressure may dominate over gas pressure as the main confining agent of the magnetic field. Arguments are also presented in favour of a highly complex magnetic geometry on very active stars. Thus the very large starspots seen in Doppler images probably are conglomerates of smaller (but possibly still sizable) spots.


2020 ◽  
Author(s):  
Réka Winslow ◽  
Amy Murphy ◽  
Nathan Schwadron ◽  
Noé Lugaz ◽  
Wenyuan Yu ◽  
...  

<p>Small flux ropes (SFRs) are interplanetary magnetic flux ropes with durations from a few minutes to a few hours. We have built a comprehensive catalog of SFRs at Mercury using magnetometer data from the orbital phase of the MESSENGER mission (2011-2015). In the absence of solar wind plasma measurements, we developed strict identification criteria for SFRs in the magnetometer observations, including conducting force-free field fits for each flux rope. We identified a total of 48 events that met our strict criteria, with events ranging in duration from 2.5 minutes to 4 hours. Using superposed epoch analysis, we obtained the generic SFR magnetic field profile at Mercury. Due to the large variation in Mercury's heliocentric distance (0.31-0.47 AU), we split the data into two distance bins. We found that the average SFR profile is more symmetric "farther from the Sun", in line with the idea that SFRs form closer to the Sun and undergo a relaxation process in the solar wind. Based on this result, as well as the SFR durations and the magnetic field strength fall-off with heliocentric distance, we infer that the SFRs observed at Mercury are expanding as they propagate with the solar wind. We also determined that the SFR occurrence frequency is nearly four times as high at Mercury as for similarly detected events at 1 AU. Most interestingly, we found two SFR populations in our dataset, one likely generated in a quasi-periodic formation process near the heliospheric current sheet, and the other formed away from the current sheet in isolated events.</p>


2020 ◽  
Author(s):  
Saliha Eren ◽  
Ingrid Mann

<p>The white-light Fraunhofer corona (F-corona) and inner Zodiacal light are generated by interplanetary (Zodiacal) dust particles that are located between Sun and observer. At visible wavelength the brightness comes from sunlight scattered at the dust particles. F-corona and inner Zodiacal light were recently observed from STEREO (Stenborg et al. 2018) and Parker Solar Probe (Howard et al. 2019) spacecraft which motivates our model calculations. We investigate the brightness by integration of scattered light along the line of sight of observations. We include a three-dimensional distribution of the Zodiacal dust that describes well the brightness of the Zodiacal light at larger elongations, a dust size distribution derived from observations at 1AU and assume Mie scattering at silicate particles to describe the scattered light over a large size distribution from 1 nm to 100 µm. From our simulations, we calculate the flattening index of the F-corona, which is the ratio of the minor axis to the major axis found for isophotes at different distances from the Sun, respectively elongations of the line of sight. Our results agree well with results from STEREO/SECCHI observational data where the flattening index varies from 0.45° and 0.65° at elongations between 5° and 24°. To compare with Parker Solar Probe observations, we investigate how the brightness changes when the observer moves closer to the Sun. This brightness change is influenced by the dust number density along the line of sight and by the changing scattering geometry.</p><p>-Stenborg G., Howard R. A., and Stauffer J. R., 2018: Characterization of the White-light Brightness of the F-corona between 5° and 24° Elongation, Astrophys. J. 862: 168 (21pp).</p><p>-Howard, R.A. and 25 co-authors, 2019: Near-Sun observations of an F-corona decrease and K-corona fine structure, Nature 576, 232–236.</p>


2013 ◽  
Vol 9 (S302) ◽  
pp. 220-221
Author(s):  
Adriana Válio ◽  
Eduardo Spagiari

AbstractSunspots are important signatures of the global solar magnetic field cycle. It is believed that other stars also present these same phenomena. However, today it is not possible to observe directly star spots due to their very small sizes. The method applied here studies star spots by detecting small variations in the stellar light curve during a planetary transit. When the planet passes in front of its host star, there is a chance of it occulting, at least partially, a spot. This allows the determination of the spots physical characteristics, such as size, temperature, and location on the stellar surface. In the case of the Sun, there exists a relation between the magnetic field and the spot temperature. We estimate the magnetic field component along the line-of-sight and the intensity of sunspots using data from the MDI instrument on board of the SOHO satellite. Assuming that the same relation applies to other stars, we estimate spots magnetic fields of CoRoT-2 and Kepler-17 stars.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qiang Hu ◽  
Wen He ◽  
Lingling Zhao ◽  
Edward Lu

Coronal mass ejections (CMEs) represent one type of the major eruption from the Sun. Their interplanetary counterparts, the interplanetary CMEs (ICMEs), are the direct manifestations of these structures when they propagate into the heliosphere and encounter one or more observing spacecraft. The ICMEs generally exhibit a set of distinctive signatures from the in-situ spacecraft measurements. A particular subset of ICMEs, the so-called Magnetic Clouds (MCs), is more uniquely defined and has been studied for decades, based on in-situ magnetic field and plasma measurements. By utilizing the latest multiple spacecraft measurements and analysis tools, we report a detailed study of the internal magnetic field configuration of an MC event observed by both the Solar Orbiter (SO) and Wind spacecraft in the solar wind near the Sun-Earth line. Both two-dimensional (2D) and three-dimensional (3D) models are applied to reveal the flux rope configurations of the MC. Various geometrical as well as physical parameters are derived and found to be similar within error estimates for the two methods. These results quantitatively characterize the coherent MC flux rope structure crossed by the two spacecraft along different paths. The implication for the radial evolution of this MC event is also discussed.


2020 ◽  
Vol 638 ◽  
pp. A28 ◽  
Author(s):  
Jan Jurčák ◽  
Markus Schmassmann ◽  
Matthias Rempel ◽  
Nazaret Bello González ◽  
Rolf Schlichenmaier

Context. Analyses of sunspot observations revealed a fundamental magnetic property of the umbral boundary: the invariance of the vertical component of the magnetic field. Aims. We analyse the magnetic properties of the umbra-penumbra boundary in simulated sunspots and thus assess their similarity to observed sunspots. We also aim to investigate the role of the plasma β and the ratio of kinetic to magnetic energy in simulated sunspots in the convective motions because these quantities cannot be reliably determined from observations. Methods. We used a set of non-gray simulation runs of sunspots with the MURaM code. The setups differed in terms of subsurface magnetic field structure and magnetic field boundary imposed at the top of the simulation domain. These data were used to synthesize the Stokes profiles, which were then degraded to the Hinode spectropolarimeter-like observations. Then, the data were treated like real Hinode observations of a sunspot, and magnetic properties at the umbral boundaries were determined. Results. Simulations with potential field extrapolation produce a realistic magnetic field configuration on the umbral boundaries of the sunspots. Two simulations with a potential field upper boundary, but different subsurface magnetic field structures, differ significantly in the extent of their penumbrae. Increasing the penumbra width by forcing more horizontal magnetic fields at the upper boundary results in magnetic properties that are not consistent with observations. This implies that the size of the penumbra is given by the subsurface structure of the magnetic field, that is, by the depth and inclination of the magnetopause, which is shaped by the expansion of the sunspot flux rope with height. None of the sunspot simulations is consistent with the observed properties of the magnetic field and the direction of the Evershed flow at the same time. Strong outward-directed Evershed flows are only found in setups with an artificially enhanced horizontal component of the magnetic field at the top boundary that are not consistent with the observed magnetic field properties at the umbra-penumbra boundary. We stress that the photospheric boundary of simulated sunspots is defined by a magnetic field strength of equipartition field value.


1990 ◽  
Vol 142 ◽  
pp. 495-500
Author(s):  
N. Gopalswamy

We review some recent studies of mass ejections from the Sun using 2-D imaging observations of the Clark Lake multifrequency radioheliograph. Radio signatures of both fast and slow coronal mass ejections (CMEs) have been observed using the Clark Lake radioheliograph. Using temporal and positional analysis of moving type IV and type II bursts, and white light CMEs we find that the type II's and CMEs need not have a direct cause and effect relationship. Instead, the type II seems to be generated by a “decoupled shock”, probably due to an associated flare. The moving type IV burst requires nonthermal particles trapped in magnetic structures associated with the CME. Since nonthermal particles can be generated independent of the speed of CMEs, moving type IV bursts need not be associated only with fast CMEs. Specific examples are presented to support these views.


1971 ◽  
Vol 43 ◽  
pp. 76-83 ◽  
Author(s):  
R. C. Smithson ◽  
R. B. Leighton

For many years solar magnetic fields have been measured by a variety of techniques, all of which exploit the Zeeman splitting of lines in the solar spectrum. One of these techniques (Leighton, 1959) involves a photographic subtraction of two monochromatic images to produce a picture of the Sun in which the line-of-sight component of the solar magnetic field appears as various shades of gray. In a magnetogram made by this method, zero field strength appears as neutral gray, while magnetic fields of one polarity or the other appear as lighter or darker areas, respectively. Figure 1 shows such a magnetogram.


2021 ◽  
Author(s):  
Volker Bothmer

<div> <p><span>Magnetic clouds are transient solar wind flows in the interplanetary medium with smooth rotations of the magnetic field vector and low plasma beta values. The analysis of magnetic clouds identified in the data of the two Helios spacecraft between 0.3 and 1 AU showed that they can be interpreted to first order by force-free, large-scale, cylindrical magnetic flux tubes. A close correlation of their occurrences was found with disappearing filaments at the Sun. The magnetic clouds that originated from the northern solar hemisphere showed predominantly left-handed magnetic helicities and the ones from the southern hemisphere predominantly right-handed ones. They were often preceded by an interplanetary shock wave and some were found to be directly following a coronal mass ejection towards the Helios spacecraft as detected by the Solwind coronagraph on board the P78-1 satellite. With the SOHO mission unprecedented long-term observations of coronal mass ejections (CMEs) were taken with the LASCO coronagraphs, with a spatial and time resolution that allowed to investigate their internal white-light fine structure. With complementary photospheric and EUV observations from SOHO, CMEs were found to arise from pre-existing small scale loop systems, overlying regions of opposite magnetic polarities. From the characteristic pattern of their source regions in both solar hemispheres, a generic scheme was presented in which their projected white-light topology depends primarily on the orientation and position of the source region’s neutral line on the solar disk. Based on this interpretation the graduated cylindrical shell method was developed, which allowed to model the electron density distribution of CMEs as 3D flux ropes. This concept was validated through stereoscopic observations of CMEs taken by the coronagraphs of the SECCHI remote sensing suite on board the twin STEREO spacecraft. The observations further revealed that the dynamic near-Sun evolution of CMEs often leads to distortions of their flux rope structure. However, the magnetic flux rope concept of CMEs is today one of the fundamental methods in space weather forecasts. With the Parker Solar Probe we currently observe for the first time CMEs in-situ and remotely at their birthplaces in the solar corona and can further unravel their origin and evolution from the corona into the heliosphere. This lecture provides a state-of-the-art overview on the magnetic structure of CMEs and includes latest observations from the Parker Solar Probe mission.</span></p> </div>


Sign in / Sign up

Export Citation Format

Share Document